Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig0 Structured version   Visualization version   GIF version

Theorem dig0 48485
Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
dig0 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0)

Proof of Theorem dig0
StepHypRef Expression
1 0e0icopnf 13480 . . 3 0 ∈ (0[,)+∞)
2 digval 48477 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵))
31, 2mp3an3 1451 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵))
4 nncn 12256 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ∈ ℂ)
6 nnne0 12282 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ≠ 0)
8 znegcl 12635 . . . . . . . . 9 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
98adantl 481 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ)
105, 7, 9expclzd 14173 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐵↑-𝐾) ∈ ℂ)
1110mul01d 11442 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐵↑-𝐾) · 0) = 0)
1211fveq2d 6890 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = (⌊‘0))
13 0zd 12608 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 0 ∈ ℤ)
14 flid 13830 . . . . . 6 (0 ∈ ℤ → (⌊‘0) = 0)
1513, 14syl 17 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘0) = 0)
1612, 15eqtrd 2769 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = 0)
1716oveq1d 7428 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = (0 mod 𝐵))
18 nnrp 13028 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
19 0mod 13924 . . . . 5 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
2018, 19syl 17 . . . 4 (𝐵 ∈ ℕ → (0 mod 𝐵) = 0)
2120adantr 480 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (0 mod 𝐵) = 0)
2217, 21eqtrd 2769 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = 0)
233, 22eqtrd 2769 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137   · cmul 11142  +∞cpnf 11274  -cneg 11475  cn 12248  cz 12596  +crp 13016  [,)cico 13371  cfl 13812   mod cmo 13891  cexp 14084  digitcdig 48474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-ico 13375  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-dig 48475
This theorem is referenced by:  0dig2pr01  48489  nn0sumshdiglem1  48500
  Copyright terms: Public domain W3C validator