Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig0 Structured version   Visualization version   GIF version

Theorem dig0 45840
Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
dig0 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0)

Proof of Theorem dig0
StepHypRef Expression
1 0e0icopnf 13119 . . 3 0 ∈ (0[,)+∞)
2 digval 45832 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵))
31, 2mp3an3 1448 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵))
4 nncn 11911 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ∈ ℂ)
6 nnne0 11937 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ≠ 0)
8 znegcl 12285 . . . . . . . . 9 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
98adantl 481 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ)
105, 7, 9expclzd 13797 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐵↑-𝐾) ∈ ℂ)
1110mul01d 11104 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐵↑-𝐾) · 0) = 0)
1211fveq2d 6760 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = (⌊‘0))
13 0zd 12261 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 0 ∈ ℤ)
14 flid 13456 . . . . . 6 (0 ∈ ℤ → (⌊‘0) = 0)
1513, 14syl 17 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘0) = 0)
1612, 15eqtrd 2778 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = 0)
1716oveq1d 7270 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = (0 mod 𝐵))
18 nnrp 12670 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
19 0mod 13550 . . . . 5 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
2018, 19syl 17 . . . 4 (𝐵 ∈ ℕ → (0 mod 𝐵) = 0)
2120adantr 480 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (0 mod 𝐵) = 0)
2217, 21eqtrd 2778 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = 0)
233, 22eqtrd 2778 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  +∞cpnf 10937  -cneg 11136  cn 11903  cz 12249  +crp 12659  [,)cico 13010  cfl 13438   mod cmo 13517  cexp 13710  digitcdig 45829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dig 45830
This theorem is referenced by:  0dig2pr01  45844  nn0sumshdiglem1  45855
  Copyright terms: Public domain W3C validator