![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig0 | Structured version Visualization version GIF version |
Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig0 | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0e0icopnf 13520 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
2 | digval 48334 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵)) | |
3 | 1, 2 | mp3an3 1450 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵)) |
4 | nncn 12303 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ∈ ℂ) |
6 | nnne0 12329 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ≠ 0) |
8 | znegcl 12680 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ) |
10 | 5, 7, 9 | expclzd 14203 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐵↑-𝐾) ∈ ℂ) |
11 | 10 | mul01d 11491 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐵↑-𝐾) · 0) = 0) |
12 | 11 | fveq2d 6926 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = (⌊‘0)) |
13 | 0zd 12653 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 0 ∈ ℤ) | |
14 | flid 13861 | . . . . . 6 ⊢ (0 ∈ ℤ → (⌊‘0) = 0) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘0) = 0) |
16 | 12, 15 | eqtrd 2780 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = 0) |
17 | 16 | oveq1d 7465 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = (0 mod 𝐵)) |
18 | nnrp 13070 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
19 | 0mod 13955 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ℕ → (0 mod 𝐵) = 0) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (0 mod 𝐵) = 0) |
22 | 17, 21 | eqtrd 2780 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = 0) |
23 | 3, 22 | eqtrd 2780 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6575 (class class class)co 7450 ℂcc 11184 0cc0 11186 · cmul 11191 +∞cpnf 11323 -cneg 11523 ℕcn 12295 ℤcz 12641 ℝ+crp 13059 [,)cico 13411 ⌊cfl 13843 mod cmo 13922 ↑cexp 14114 digitcdig 48331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-ico 13415 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-dig 48332 |
This theorem is referenced by: 0dig2pr01 48346 nn0sumshdiglem1 48357 |
Copyright terms: Public domain | W3C validator |