Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig0 | Structured version Visualization version GIF version |
Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig0 | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0e0icopnf 13119 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
2 | digval 45832 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵)) | |
3 | 1, 2 | mp3an3 1448 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵)) |
4 | nncn 11911 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ∈ ℂ) |
6 | nnne0 11937 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ≠ 0) |
8 | znegcl 12285 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → -𝐾 ∈ ℤ) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ) |
10 | 5, 7, 9 | expclzd 13797 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐵↑-𝐾) ∈ ℂ) |
11 | 10 | mul01d 11104 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐵↑-𝐾) · 0) = 0) |
12 | 11 | fveq2d 6760 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = (⌊‘0)) |
13 | 0zd 12261 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 0 ∈ ℤ) | |
14 | flid 13456 | . . . . . 6 ⊢ (0 ∈ ℤ → (⌊‘0) = 0) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘0) = 0) |
16 | 12, 15 | eqtrd 2778 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = 0) |
17 | 16 | oveq1d 7270 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = (0 mod 𝐵)) |
18 | nnrp 12670 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
19 | 0mod 13550 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ℕ → (0 mod 𝐵) = 0) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (0 mod 𝐵) = 0) |
22 | 17, 21 | eqtrd 2778 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = 0) |
23 | 3, 22 | eqtrd 2778 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 +∞cpnf 10937 -cneg 11136 ℕcn 11903 ℤcz 12249 ℝ+crp 12659 [,)cico 13010 ⌊cfl 13438 mod cmo 13517 ↑cexp 13710 digitcdig 45829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-dig 45830 |
This theorem is referenced by: 0dig2pr01 45844 nn0sumshdiglem1 45855 |
Copyright terms: Public domain | W3C validator |