Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0fr Structured version   Visualization version   GIF version

Theorem dignn0fr 48583
Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
dignn0fr ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignn0fr
StepHypRef Expression
1 id 22 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ)
2 eldifi 4090 . . 3 (𝐾 ∈ (ℤ ∖ ℕ0) → 𝐾 ∈ ℤ)
3 nn0re 12427 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4 nn0ge0 12443 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elrege0 13391 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
63, 4, 5sylanbrc 583 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
7 digval 48580 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
81, 2, 6, 7syl3an 1160 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
9 nnz 12526 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
10 eldif 3921 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) ↔ (𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0))
11 znnn0nn 12621 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0) → -𝐾 ∈ ℕ)
1210, 11sylbi 217 . . . . . . . . 9 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ)
1312nnnn0d 12479 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ0)
14 zexpcl 14017 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
159, 13, 14syl2an 596 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℤ)
16153adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
17 nn0z 12530 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
18173ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1916, 18zmulcld 12620 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℤ)
20 flid 13746 . . . . 5 (((𝐵↑-𝐾) · 𝑁) ∈ ℤ → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2119, 20syl 17 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2221oveq1d 7384 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = (((𝐵↑-𝐾) · 𝑁) mod 𝐵))
23 nnre 12169 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
24 reexpcl 14019 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
2523, 13, 24syl2an 596 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℝ)
2625recnd 11178 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℂ)
27263adant3 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℂ)
28 nn0cn 12428 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29283ad2ant3 1135 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
30 nncn 12170 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
31 nnne0 12196 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3230, 31jca 511 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
33323ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
34 div23 11832 . . . . . . 7 (((𝐵↑-𝐾) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
3527, 29, 33, 34syl3anc 1373 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
36303ad2ant1 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
37313ad2ant1 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
3812nnzd 12532 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℤ)
39383ad2ant2 1134 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → -𝐾 ∈ ℤ)
4036, 37, 39expm1d 14097 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) = ((𝐵↑-𝐾) / 𝐵))
4140eqcomd 2735 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) / 𝐵) = (𝐵↑(-𝐾 − 1)))
4241oveq1d 7384 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) / 𝐵) · 𝑁) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
4335, 42eqtrd 2764 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
44 nnm1nn0 12459 . . . . . . . . 9 (-𝐾 ∈ ℕ → (-𝐾 − 1) ∈ ℕ0)
4512, 44syl 17 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → (-𝐾 − 1) ∈ ℕ0)
46 zexpcl 14017 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ (-𝐾 − 1) ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
479, 45, 46syl2an 596 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
48473adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
4948, 18zmulcld 12620 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑(-𝐾 − 1)) · 𝑁) ∈ ℤ)
5043, 49eqeltrd 2828 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ)
51253adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
5233ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5351, 52remulcld 11180 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℝ)
54 nnrp 12939 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
55543ad2ant1 1133 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
56 mod0 13814 . . . . 5 ((((𝐵↑-𝐾) · 𝑁) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5753, 55, 56syl2anc 584 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5850, 57mpbird 257 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0)
5922, 58eqtrd 2764 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = 0)
608, 59eqtrd 2764 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  +∞cpnf 11181  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  +crp 12927  [,)cico 13284  cfl 13728   mod cmo 13807  cexp 14002  digitcdig 48577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-dig 48578
This theorem is referenced by:  dig1  48590
  Copyright terms: Public domain W3C validator