Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0fr Structured version   Visualization version   GIF version

Theorem dignn0fr 48335
Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
dignn0fr ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignn0fr
StepHypRef Expression
1 id 22 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ)
2 eldifi 4154 . . 3 (𝐾 ∈ (ℤ ∖ ℕ0) → 𝐾 ∈ ℤ)
3 nn0re 12562 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4 nn0ge0 12578 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elrege0 13514 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
63, 4, 5sylanbrc 582 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
7 digval 48332 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
81, 2, 6, 7syl3an 1160 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
9 nnz 12660 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
10 eldif 3986 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) ↔ (𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0))
11 znnn0nn 12754 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0) → -𝐾 ∈ ℕ)
1210, 11sylbi 217 . . . . . . . . 9 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ)
1312nnnn0d 12613 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ0)
14 zexpcl 14127 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
159, 13, 14syl2an 595 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℤ)
16153adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
17 nn0z 12664 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
18173ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1916, 18zmulcld 12753 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℤ)
20 flid 13859 . . . . 5 (((𝐵↑-𝐾) · 𝑁) ∈ ℤ → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2119, 20syl 17 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2221oveq1d 7463 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = (((𝐵↑-𝐾) · 𝑁) mod 𝐵))
23 nnre 12300 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
24 reexpcl 14129 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
2523, 13, 24syl2an 595 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℝ)
2625recnd 11318 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℂ)
27263adant3 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℂ)
28 nn0cn 12563 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29283ad2ant3 1135 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
30 nncn 12301 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
31 nnne0 12327 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3230, 31jca 511 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
33323ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
34 div23 11968 . . . . . . 7 (((𝐵↑-𝐾) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
3527, 29, 33, 34syl3anc 1371 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
36303ad2ant1 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
37313ad2ant1 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
3812nnzd 12666 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℤ)
39383ad2ant2 1134 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → -𝐾 ∈ ℤ)
4036, 37, 39expm1d 14206 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) = ((𝐵↑-𝐾) / 𝐵))
4140eqcomd 2746 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) / 𝐵) = (𝐵↑(-𝐾 − 1)))
4241oveq1d 7463 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) / 𝐵) · 𝑁) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
4335, 42eqtrd 2780 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
44 nnm1nn0 12594 . . . . . . . . 9 (-𝐾 ∈ ℕ → (-𝐾 − 1) ∈ ℕ0)
4512, 44syl 17 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → (-𝐾 − 1) ∈ ℕ0)
46 zexpcl 14127 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ (-𝐾 − 1) ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
479, 45, 46syl2an 595 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
48473adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
4948, 18zmulcld 12753 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑(-𝐾 − 1)) · 𝑁) ∈ ℤ)
5043, 49eqeltrd 2844 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ)
51253adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
5233ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5351, 52remulcld 11320 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℝ)
54 nnrp 13068 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
55543ad2ant1 1133 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
56 mod0 13927 . . . . 5 ((((𝐵↑-𝐾) · 𝑁) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5753, 55, 56syl2anc 583 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5850, 57mpbird 257 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0)
5922, 58eqtrd 2780 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = 0)
608, 59eqtrd 2780 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  +crp 13057  [,)cico 13409  cfl 13841   mod cmo 13920  cexp 14112  digitcdig 48329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-dig 48330
This theorem is referenced by:  dig1  48342
  Copyright terms: Public domain W3C validator