Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0fr Structured version   Visualization version   GIF version

Theorem dignn0fr 46677
Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
dignn0fr ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignn0fr
StepHypRef Expression
1 id 22 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ)
2 eldifi 4086 . . 3 (𝐾 ∈ (ℤ ∖ ℕ0) → 𝐾 ∈ ℤ)
3 nn0re 12422 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4 nn0ge0 12438 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elrege0 13371 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
63, 4, 5sylanbrc 583 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
7 digval 46674 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
81, 2, 6, 7syl3an 1160 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
9 nnz 12520 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
10 eldif 3920 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) ↔ (𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0))
11 znnn0nn 12614 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0) → -𝐾 ∈ ℕ)
1210, 11sylbi 216 . . . . . . . . 9 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ)
1312nnnn0d 12473 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ0)
14 zexpcl 13982 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
159, 13, 14syl2an 596 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℤ)
16153adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
17 nn0z 12524 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
18173ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1916, 18zmulcld 12613 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℤ)
20 flid 13713 . . . . 5 (((𝐵↑-𝐾) · 𝑁) ∈ ℤ → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2119, 20syl 17 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2221oveq1d 7372 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = (((𝐵↑-𝐾) · 𝑁) mod 𝐵))
23 nnre 12160 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
24 reexpcl 13984 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
2523, 13, 24syl2an 596 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℝ)
2625recnd 11183 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℂ)
27263adant3 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℂ)
28 nn0cn 12423 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29283ad2ant3 1135 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
30 nncn 12161 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
31 nnne0 12187 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3230, 31jca 512 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
33323ad2ant1 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
34 div23 11832 . . . . . . 7 (((𝐵↑-𝐾) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
3527, 29, 33, 34syl3anc 1371 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
36303ad2ant1 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
37313ad2ant1 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
3812nnzd 12526 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℤ)
39383ad2ant2 1134 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → -𝐾 ∈ ℤ)
4036, 37, 39expm1d 14061 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) = ((𝐵↑-𝐾) / 𝐵))
4140eqcomd 2742 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) / 𝐵) = (𝐵↑(-𝐾 − 1)))
4241oveq1d 7372 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) / 𝐵) · 𝑁) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
4335, 42eqtrd 2776 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
44 nnm1nn0 12454 . . . . . . . . 9 (-𝐾 ∈ ℕ → (-𝐾 − 1) ∈ ℕ0)
4512, 44syl 17 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → (-𝐾 − 1) ∈ ℕ0)
46 zexpcl 13982 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ (-𝐾 − 1) ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
479, 45, 46syl2an 596 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
48473adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
4948, 18zmulcld 12613 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑(-𝐾 − 1)) · 𝑁) ∈ ℤ)
5043, 49eqeltrd 2838 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ)
51253adant3 1132 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
5233ad2ant3 1135 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5351, 52remulcld 11185 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℝ)
54 nnrp 12926 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
55543ad2ant1 1133 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
56 mod0 13781 . . . . 5 ((((𝐵↑-𝐾) · 𝑁) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5753, 55, 56syl2anc 584 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5850, 57mpbird 256 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0)
5922, 58eqtrd 2776 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = 0)
608, 59eqtrd 2776 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cdif 3907   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  +crp 12915  [,)cico 13266  cfl 13695   mod cmo 13774  cexp 13967  digitcdig 46671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-dig 46672
This theorem is referenced by:  dig1  46684
  Copyright terms: Public domain W3C validator