Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0fr Structured version   Visualization version   GIF version

Theorem dignn0fr 45947
Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
dignn0fr ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignn0fr
StepHypRef Expression
1 id 22 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ)
2 eldifi 4061 . . 3 (𝐾 ∈ (ℤ ∖ ℕ0) → 𝐾 ∈ ℤ)
3 nn0re 12242 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4 nn0ge0 12258 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elrege0 13186 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
63, 4, 5sylanbrc 583 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
7 digval 45944 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
81, 2, 6, 7syl3an 1159 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
9 nnz 12342 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
10 eldif 3897 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) ↔ (𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0))
11 znnn0nn 12433 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0) → -𝐾 ∈ ℕ)
1210, 11sylbi 216 . . . . . . . . 9 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ)
1312nnnn0d 12293 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ0)
14 zexpcl 13797 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
159, 13, 14syl2an 596 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℤ)
16153adant3 1131 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
17 nn0z 12343 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
18173ad2ant3 1134 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1916, 18zmulcld 12432 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℤ)
20 flid 13528 . . . . 5 (((𝐵↑-𝐾) · 𝑁) ∈ ℤ → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2119, 20syl 17 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2221oveq1d 7290 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = (((𝐵↑-𝐾) · 𝑁) mod 𝐵))
23 nnre 11980 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
24 reexpcl 13799 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
2523, 13, 24syl2an 596 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℝ)
2625recnd 11003 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℂ)
27263adant3 1131 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℂ)
28 nn0cn 12243 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29283ad2ant3 1134 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
30 nncn 11981 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
31 nnne0 12007 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3230, 31jca 512 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
33323ad2ant1 1132 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
34 div23 11652 . . . . . . 7 (((𝐵↑-𝐾) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
3527, 29, 33, 34syl3anc 1370 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
36303ad2ant1 1132 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
37313ad2ant1 1132 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
3812nnzd 12425 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℤ)
39383ad2ant2 1133 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → -𝐾 ∈ ℤ)
4036, 37, 39expm1d 13874 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) = ((𝐵↑-𝐾) / 𝐵))
4140eqcomd 2744 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) / 𝐵) = (𝐵↑(-𝐾 − 1)))
4241oveq1d 7290 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) / 𝐵) · 𝑁) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
4335, 42eqtrd 2778 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
44 nnm1nn0 12274 . . . . . . . . 9 (-𝐾 ∈ ℕ → (-𝐾 − 1) ∈ ℕ0)
4512, 44syl 17 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → (-𝐾 − 1) ∈ ℕ0)
46 zexpcl 13797 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ (-𝐾 − 1) ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
479, 45, 46syl2an 596 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
48473adant3 1131 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
4948, 18zmulcld 12432 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑(-𝐾 − 1)) · 𝑁) ∈ ℤ)
5043, 49eqeltrd 2839 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ)
51253adant3 1131 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
5233ad2ant3 1134 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5351, 52remulcld 11005 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℝ)
54 nnrp 12741 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
55543ad2ant1 1132 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
56 mod0 13596 . . . . 5 ((((𝐵↑-𝐾) · 𝑁) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5753, 55, 56syl2anc 584 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5850, 57mpbird 256 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0)
5922, 58eqtrd 2778 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = 0)
608, 59eqtrd 2778 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  +∞cpnf 11006  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  +crp 12730  [,)cico 13081  cfl 13510   mod cmo 13589  cexp 13782  digitcdig 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-dig 45942
This theorem is referenced by:  dig1  45954
  Copyright terms: Public domain W3C validator