Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0fr Structured version   Visualization version   GIF version

Theorem dignn0fr 45835
Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
dignn0fr ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignn0fr
StepHypRef Expression
1 id 22 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ)
2 eldifi 4057 . . 3 (𝐾 ∈ (ℤ ∖ ℕ0) → 𝐾 ∈ ℤ)
3 nn0re 12172 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4 nn0ge0 12188 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
5 elrege0 13115 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
63, 4, 5sylanbrc 582 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
7 digval 45832 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
81, 2, 6, 7syl3an 1158 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵))
9 nnz 12272 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
10 eldif 3893 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) ↔ (𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0))
11 znnn0nn 12362 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ℕ0) → -𝐾 ∈ ℕ)
1210, 11sylbi 216 . . . . . . . . 9 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ)
1312nnnn0d 12223 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℕ0)
14 zexpcl 13725 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
159, 13, 14syl2an 595 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℤ)
16153adant3 1130 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℤ)
17 nn0z 12273 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
18173ad2ant3 1133 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1916, 18zmulcld 12361 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℤ)
20 flid 13456 . . . . 5 (((𝐵↑-𝐾) · 𝑁) ∈ ℤ → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2119, 20syl 17 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐵↑-𝐾) · 𝑁)) = ((𝐵↑-𝐾) · 𝑁))
2221oveq1d 7270 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = (((𝐵↑-𝐾) · 𝑁) mod 𝐵))
23 nnre 11910 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
24 reexpcl 13727 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐾 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
2523, 13, 24syl2an 595 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℝ)
2625recnd 10934 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑-𝐾) ∈ ℂ)
27263adant3 1130 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℂ)
28 nn0cn 12173 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29283ad2ant3 1133 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
30 nncn 11911 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
31 nnne0 11937 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3230, 31jca 511 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
33323ad2ant1 1131 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
34 div23 11582 . . . . . . 7 (((𝐵↑-𝐾) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
3527, 29, 33, 34syl3anc 1369 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = (((𝐵↑-𝐾) / 𝐵) · 𝑁))
36303ad2ant1 1131 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
37313ad2ant1 1131 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
3812nnzd 12354 . . . . . . . . . 10 (𝐾 ∈ (ℤ ∖ ℕ0) → -𝐾 ∈ ℤ)
39383ad2ant2 1132 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → -𝐾 ∈ ℤ)
4036, 37, 39expm1d 13802 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) = ((𝐵↑-𝐾) / 𝐵))
4140eqcomd 2744 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) / 𝐵) = (𝐵↑(-𝐾 − 1)))
4241oveq1d 7270 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) / 𝐵) · 𝑁) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
4335, 42eqtrd 2778 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) = ((𝐵↑(-𝐾 − 1)) · 𝑁))
44 nnm1nn0 12204 . . . . . . . . 9 (-𝐾 ∈ ℕ → (-𝐾 − 1) ∈ ℕ0)
4512, 44syl 17 . . . . . . . 8 (𝐾 ∈ (ℤ ∖ ℕ0) → (-𝐾 − 1) ∈ ℕ0)
46 zexpcl 13725 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ (-𝐾 − 1) ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
479, 45, 46syl2an 595 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0)) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
48473adant3 1130 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑(-𝐾 − 1)) ∈ ℤ)
4948, 18zmulcld 12361 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑(-𝐾 − 1)) · 𝑁) ∈ ℤ)
5043, 49eqeltrd 2839 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ)
51253adant3 1130 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐵↑-𝐾) ∈ ℝ)
5233ad2ant3 1133 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5351, 52remulcld 10936 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝐵↑-𝐾) · 𝑁) ∈ ℝ)
54 nnrp 12670 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
55543ad2ant1 1131 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
56 mod0 13524 . . . . 5 ((((𝐵↑-𝐾) · 𝑁) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5753, 55, 56syl2anc 583 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0 ↔ (((𝐵↑-𝐾) · 𝑁) / 𝐵) ∈ ℤ))
5850, 57mpbird 256 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝐵↑-𝐾) · 𝑁) mod 𝐵) = 0)
5922, 58eqtrd 2778 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((⌊‘((𝐵↑-𝐾) · 𝑁)) mod 𝐵) = 0)
608, 59eqtrd 2778 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  +∞cpnf 10937  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  +crp 12659  [,)cico 13010  cfl 13438   mod cmo 13517  cexp 13710  digitcdig 45829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dig 45830
This theorem is referenced by:  dig1  45842
  Copyright terms: Public domain W3C validator