![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvasca | Structured version Visualization version GIF version |
Description: The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
dvasca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvasca.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
dvasca.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvasca.f | ⊢ 𝐹 = (Scalar‘𝑈) |
Ref | Expression |
---|---|
dvasca | ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvasca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2736 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
3 | eqid 2736 | . . . 4 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | dvasca.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | dvasca.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dvaset 39457 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑊)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠‘𝑓))〉})) |
7 | 6 | fveq2d 6844 | . 2 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → (Scalar‘𝑈) = (Scalar‘({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑊)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠‘𝑓))〉}))) |
8 | dvasca.f | . 2 ⊢ 𝐹 = (Scalar‘𝑈) | |
9 | 4 | fvexi 6854 | . . 3 ⊢ 𝐷 ∈ V |
10 | eqid 2736 | . . . 4 ⊢ ({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑊)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠‘𝑓))〉}) = ({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑊)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠‘𝑓))〉}) | |
11 | 10 | lmodsca 17206 | . . 3 ⊢ (𝐷 ∈ V → 𝐷 = (Scalar‘({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑊)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠‘𝑓))〉}))) |
12 | 9, 11 | ax-mp 5 | . 2 ⊢ 𝐷 = (Scalar‘({〈(Base‘ndx), ((LTrn‘𝐾)‘𝑊)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), 𝐷〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠‘𝑓))〉})) |
13 | 7, 8, 12 | 3eqtr4g 2801 | 1 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐹 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3444 ∪ cun 3907 {csn 4585 {ctp 4589 〈cop 4591 ∘ ccom 5636 ‘cfv 6494 ∈ cmpo 7356 ndxcnx 17062 Basecbs 17080 +gcplusg 17130 Scalarcsca 17133 ·𝑠 cvsca 17134 LHypclh 38436 LTrncltrn 38553 TEndoctendo 39204 EDRingcedring 39205 DVecAcdveca 39454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7800 df-1st 7918 df-2nd 7919 df-frecs 8209 df-wrecs 8240 df-recs 8314 df-rdg 8353 df-1o 8409 df-er 8645 df-en 8881 df-dom 8882 df-sdom 8883 df-fin 8884 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-nn 12151 df-2 12213 df-3 12214 df-4 12215 df-5 12216 df-6 12217 df-n0 12411 df-z 12497 df-uz 12761 df-fz 13422 df-struct 17016 df-slot 17051 df-ndx 17063 df-base 17081 df-plusg 17143 df-sca 17146 df-vsca 17147 df-dveca 39455 |
This theorem is referenced by: dvabase 39459 dvafplusg 39460 dvafmulr 39463 dvalveclem 39477 |
Copyright terms: Public domain | W3C validator |