Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvasca Structured version   Visualization version   GIF version

Theorem dvasca 38295
 Description: The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
dvasca.h 𝐻 = (LHyp‘𝐾)
dvasca.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvasca.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvasca.f 𝐹 = (Scalar‘𝑈)
Assertion
Ref Expression
dvasca ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)

Proof of Theorem dvasca
Dummy variables 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvasca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2801 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
3 eqid 2801 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 dvasca.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 dvasca.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 38294 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
76fveq2d 6653 . 2 ((𝐾𝑋𝑊𝐻) → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
8 dvasca.f . 2 𝐹 = (Scalar‘𝑈)
94fvexi 6663 . . 3 𝐷 ∈ V
10 eqid 2801 . . . 4 ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})
1110lmodsca 16634 . . 3 (𝐷 ∈ V → 𝐷 = (Scalar‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
129, 11ax-mp 5 . 2 𝐷 = (Scalar‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
137, 8, 123eqtr4g 2861 1 ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444   ∪ cun 3882  {csn 4528  {ctp 4532  ⟨cop 4534   ∘ ccom 5527  ‘cfv 6328   ∈ cmpo 7141  ndxcnx 16475  Basecbs 16478  +gcplusg 16560  Scalarcsca 16563   ·𝑠 cvsca 16564  LHypclh 37273  LTrncltrn 37390  TEndoctendo 38041  EDRingcedring 38042  DVecAcdveca 38291 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-sca 16576  df-vsca 16577  df-dveca 38292 This theorem is referenced by:  dvabase  38296  dvafplusg  38297  dvafmulr  38300  dvalveclem  38314
 Copyright terms: Public domain W3C validator