Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvasca Structured version   Visualization version   GIF version

Theorem dvasca 38706
Description: The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
dvasca.h 𝐻 = (LHyp‘𝐾)
dvasca.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvasca.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvasca.f 𝐹 = (Scalar‘𝑈)
Assertion
Ref Expression
dvasca ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)

Proof of Theorem dvasca
Dummy variables 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvasca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2736 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
3 eqid 2736 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 dvasca.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 dvasca.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 38705 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
76fveq2d 6699 . 2 ((𝐾𝑋𝑊𝐻) → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
8 dvasca.f . 2 𝐹 = (Scalar‘𝑈)
94fvexi 6709 . . 3 𝐷 ∈ V
10 eqid 2736 . . . 4 ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})
1110lmodsca 16823 . . 3 (𝐷 ∈ V → 𝐷 = (Scalar‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
129, 11ax-mp 5 . 2 𝐷 = (Scalar‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
137, 8, 123eqtr4g 2796 1 ((𝐾𝑋𝑊𝐻) → 𝐹 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  cun 3851  {csn 4527  {ctp 4531  cop 4533  ccom 5540  cfv 6358  cmpo 7193  ndxcnx 16663  Basecbs 16666  +gcplusg 16749  Scalarcsca 16752   ·𝑠 cvsca 16753  LHypclh 37684  LTrncltrn 37801  TEndoctendo 38452  EDRingcedring 38453  DVecAcdveca 38702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-sca 16765  df-vsca 16766  df-dveca 38703
This theorem is referenced by:  dvabase  38707  dvafplusg  38708  dvafmulr  38711  dvalveclem  38725
  Copyright terms: Public domain W3C validator