Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafvsca Structured version   Visualization version   GIF version

Theorem dvafvsca 38156
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvafvsca.h 𝐻 = (LHyp‘𝐾)
dvafvsca.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafvsca.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafvsca.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafvsca.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvafvsca ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
Distinct variable groups:   𝑓,𝑠,𝐸   𝑓,𝐾,𝑠   𝑇,𝑓,𝑠   𝑓,𝑊,𝑠
Allowed substitution hints:   · (𝑓,𝑠)   𝑈(𝑓,𝑠)   𝐻(𝑓,𝑠)   𝑉(𝑓,𝑠)

Proof of Theorem dvafvsca
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dvafvsca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvafvsca.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvafvsca.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 eqid 2824 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvafvsca.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 38145 . . 3 ((𝐾𝑉𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
76fveq2d 6677 . 2 ((𝐾𝑉𝑊𝐻) → ( ·𝑠𝑈) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
8 dvafvsca.s . 2 · = ( ·𝑠𝑈)
93fvexi 6687 . . . 4 𝐸 ∈ V
102fvexi 6687 . . . 4 𝑇 ∈ V
119, 10mpoex 7780 . . 3 (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) ∈ V
12 eqid 2824 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})
1312lmodvsca 16643 . . 3 ((𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) ∈ V → (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
1411, 13ax-mp 5 . 2 (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
157, 8, 143eqtr4g 2884 1 ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cun 3937  {csn 4570  {ctp 4574  cop 4576  ccom 5562  cfv 6358  cmpo 7161  ndxcnx 16483  Basecbs 16486  +gcplusg 16568  Scalarcsca 16571   ·𝑠 cvsca 16572  LHypclh 37124  LTrncltrn 37241  TEndoctendo 37892  EDRingcedring 37893  DVecAcdveca 38142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-sca 16584  df-vsca 16585  df-dveca 38143
This theorem is referenced by:  dvavsca  38157
  Copyright terms: Public domain W3C validator