Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvafvsca | Structured version Visualization version GIF version |
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
dvafvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvafvsca.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvafvsca.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvafvsca.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvafvsca.s | ⊢ · = ( ·𝑠 ‘𝑈) |
Ref | Expression |
---|---|
dvafvsca | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvafvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvafvsca.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvafvsca.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
5 | dvafvsca.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dvaset 38946 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) |
7 | 6 | fveq2d 6760 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}))) |
8 | dvafvsca.s | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
9 | 3 | fvexi 6770 | . . . 4 ⊢ 𝐸 ∈ V |
10 | 2 | fvexi 6770 | . . . 4 ⊢ 𝑇 ∈ V |
11 | 9, 10 | mpoex 7893 | . . 3 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓)) ∈ V |
12 | eqid 2738 | . . . 4 ⊢ ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}) = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}) | |
13 | 12 | lmodvsca 16965 | . . 3 ⊢ ((𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓)) ∈ V → (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓)) = ( ·𝑠 ‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}))) |
14 | 11, 13 | ax-mp 5 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓)) = ( ·𝑠 ‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) |
15 | 7, 8, 14 | 3eqtr4g 2804 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 {ctp 4562 〈cop 4564 ∘ ccom 5584 ‘cfv 6418 ∈ cmpo 7257 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 LHypclh 37925 LTrncltrn 38042 TEndoctendo 38693 EDRingcedring 38694 DVecAcdveca 38943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-sca 16904 df-vsca 16905 df-dveca 38944 |
This theorem is referenced by: dvavsca 38958 |
Copyright terms: Public domain | W3C validator |