Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafvsca Structured version   Visualization version   GIF version

Theorem dvafvsca 38626
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvafvsca.h 𝐻 = (LHyp‘𝐾)
dvafvsca.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafvsca.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafvsca.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafvsca.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvafvsca ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
Distinct variable groups:   𝑓,𝑠,𝐸   𝑓,𝐾,𝑠   𝑇,𝑓,𝑠   𝑓,𝑊,𝑠
Allowed substitution hints:   · (𝑓,𝑠)   𝑈(𝑓,𝑠)   𝐻(𝑓,𝑠)   𝑉(𝑓,𝑠)

Proof of Theorem dvafvsca
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dvafvsca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvafvsca.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvafvsca.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 eqid 2758 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvafvsca.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 38615 . . 3 ((𝐾𝑉𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
76fveq2d 6667 . 2 ((𝐾𝑉𝑊𝐻) → ( ·𝑠𝑈) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
8 dvafvsca.s . 2 · = ( ·𝑠𝑈)
93fvexi 6677 . . . 4 𝐸 ∈ V
102fvexi 6677 . . . 4 𝑇 ∈ V
119, 10mpoex 7788 . . 3 (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) ∈ V
12 eqid 2758 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})
1312lmodvsca 16711 . . 3 ((𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) ∈ V → (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
1411, 13ax-mp 5 . 2 (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
157, 8, 143eqtr4g 2818 1 ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cun 3858  {csn 4525  {ctp 4529  cop 4531  ccom 5532  cfv 6340  cmpo 7158  ndxcnx 16551  Basecbs 16554  +gcplusg 16636  Scalarcsca 16639   ·𝑠 cvsca 16640  LHypclh 37594  LTrncltrn 37711  TEndoctendo 38362  EDRingcedring 38363  DVecAcdveca 38612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-plusg 16649  df-sca 16652  df-vsca 16653  df-dveca 38613
This theorem is referenced by:  dvavsca  38627
  Copyright terms: Public domain W3C validator