Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafvsca Structured version   Visualization version   GIF version

Theorem dvafvsca 40973
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvafvsca.h 𝐻 = (LHyp‘𝐾)
dvafvsca.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafvsca.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafvsca.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafvsca.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvafvsca ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
Distinct variable groups:   𝑓,𝑠,𝐸   𝑓,𝐾,𝑠   𝑇,𝑓,𝑠   𝑓,𝑊,𝑠
Allowed substitution hints:   · (𝑓,𝑠)   𝑈(𝑓,𝑠)   𝐻(𝑓,𝑠)   𝑉(𝑓,𝑠)

Proof of Theorem dvafvsca
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dvafvsca.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvafvsca.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvafvsca.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 eqid 2740 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvafvsca.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 40962 . . 3 ((𝐾𝑉𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
76fveq2d 6924 . 2 ((𝐾𝑉𝑊𝐻) → ( ·𝑠𝑈) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
8 dvafvsca.s . 2 · = ( ·𝑠𝑈)
93fvexi 6934 . . . 4 𝐸 ∈ V
102fvexi 6934 . . . 4 𝑇 ∈ V
119, 10mpoex 8120 . . 3 (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) ∈ V
12 eqid 2740 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})
1312lmodvsca 17388 . . 3 ((𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) ∈ V → (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
1411, 13ax-mp 5 . 2 (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
157, 8, 143eqtr4g 2805 1 ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  {csn 4648  {ctp 4652  cop 4654  ccom 5704  cfv 6573  cmpo 7450  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709  EDRingcedring 40710  DVecAcdveca 40959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-sca 17327  df-vsca 17328  df-dveca 40960
This theorem is referenced by:  dvavsca  40974
  Copyright terms: Public domain W3C validator