| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvavbase | Structured version Visualization version GIF version | ||
| Description: The vectors (vector base set) of the constructed partial vector space A are all translations (for a fiducial co-atom 𝑊). (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| dvavbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvavbase.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvavbase.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvavbase.v | ⊢ 𝑉 = (Base‘𝑈) |
| Ref | Expression |
|---|---|
| dvavbase | ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑉 = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvavbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvavbase.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
| 5 | dvavbase.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | dvaset 41127 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) |
| 7 | 6 | fveq2d 6834 | . 2 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (Base‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}))) |
| 8 | dvavbase.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 9 | 2 | fvexi 6844 | . . 3 ⊢ 𝑇 ∈ V |
| 10 | eqid 2733 | . . . 4 ⊢ ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}) = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}) | |
| 11 | 10 | lmodbase 17234 | . . 3 ⊢ (𝑇 ∈ V → 𝑇 = (Base‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}))) |
| 12 | 9, 11 | ax-mp 5 | . 2 ⊢ 𝑇 = (Base‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) |
| 13 | 7, 8, 12 | 3eqtr4g 2793 | 1 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑉 = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {csn 4577 {ctp 4581 〈cop 4583 ∘ ccom 5625 ‘cfv 6488 ∈ cmpo 7356 ndxcnx 17108 Basecbs 17124 +gcplusg 17165 Scalarcsca 17168 ·𝑠 cvsca 17169 LHypclh 40106 LTrncltrn 40223 TEndoctendo 40874 EDRingcedring 40875 DVecAcdveca 41124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-sca 17181 df-vsca 17182 df-dveca 41125 |
| This theorem is referenced by: dvalveclem 41147 dva0g 41149 dialss 41168 diassdvaN 41182 dia1dim2 41184 dia1dimid 41185 dia2dimlem5 41190 dvadiaN 41250 |
| Copyright terms: Public domain | W3C validator |