Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafvadd Structured version   Visualization version   GIF version

Theorem dvafvadd 41008
Description: The vector sum operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvafvadd.h 𝐻 = (LHyp‘𝐾)
dvafvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafvadd.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafvadd.v + = (+g𝑈)
Assertion
Ref Expression
dvafvadd ((𝐾𝑋𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem dvafvadd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dvafvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvafvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 eqid 2729 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 eqid 2729 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvafvadd.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 40999 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
76fveq2d 6862 . 2 ((𝐾𝑋𝑊𝐻) → (+g𝑈) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
8 dvafvadd.v . 2 + = (+g𝑈)
92fvexi 6872 . . . 4 𝑇 ∈ V
109, 9mpoex 8058 . . 3 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) ∈ V
11 eqid 2729 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})
1211lmodplusg 17290 . . 3 ((𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) ∈ V → (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
1310, 12ax-mp 5 . 2 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
147, 8, 133eqtr4g 2789 1 ((𝐾𝑋𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  {csn 4589  {ctp 4593  cop 4595  ccom 5642  cfv 6511  cmpo 7389  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  LHypclh 39978  LTrncltrn 40095  TEndoctendo 40746  EDRingcedring 40747  DVecAcdveca 40996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-sca 17236  df-vsca 17237  df-dveca 40997
This theorem is referenced by:  dvavadd  41009
  Copyright terms: Public domain W3C validator