| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvafvadd | Structured version Visualization version GIF version | ||
| Description: The vector sum operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| dvafvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvafvadd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvafvadd.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvafvadd.v | ⊢ + = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| dvafvadd | ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvafvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvafvadd.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | eqid 2736 | . . . 4 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | eqid 2736 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
| 5 | dvafvadd.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | dvaset 41029 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) |
| 7 | 6 | fveq2d 6885 | . 2 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → (+g‘𝑈) = (+g‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}))) |
| 8 | dvafvadd.v | . 2 ⊢ + = (+g‘𝑈) | |
| 9 | 2 | fvexi 6895 | . . . 4 ⊢ 𝑇 ∈ V |
| 10 | 9, 9 | mpoex 8083 | . . 3 ⊢ (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) ∈ V |
| 11 | eqid 2736 | . . . 4 ⊢ ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}) = ({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}) | |
| 12 | 11 | lmodplusg 17346 | . . 3 ⊢ ((𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) = (+g‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉}))) |
| 13 | 10, 12 | ax-mp 5 | . 2 ⊢ (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) = (+g‘({〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))〉})) |
| 14 | 7, 8, 13 | 3eqtr4g 2796 | 1 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 {ctp 4610 〈cop 4612 ∘ ccom 5663 ‘cfv 6536 ∈ cmpo 7412 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 LHypclh 40008 LTrncltrn 40125 TEndoctendo 40776 EDRingcedring 40777 DVecAcdveca 41026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-sca 17292 df-vsca 17293 df-dveca 41027 |
| This theorem is referenced by: dvavadd 41039 |
| Copyright terms: Public domain | W3C validator |