Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elcarsg | Structured version Visualization version GIF version |
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
Ref | Expression |
---|---|
0elcarsg | ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4320 | . . 3 ⊢ ∅ ⊆ 𝑂 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝑂) |
3 | in0 4315 | . . . . . . . 8 ⊢ (𝑒 ∩ ∅) = ∅ | |
4 | 3 | fveq2i 6729 | . . . . . . 7 ⊢ (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅) |
5 | baselcarsg.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
6 | 4, 5 | syl5eq 2791 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0) |
7 | dif0 4296 | . . . . . . . 8 ⊢ (𝑒 ∖ ∅) = 𝑒 | |
8 | 7 | fveq2i 6729 | . . . . . . 7 ⊢ (𝑀‘(𝑒 ∖ ∅)) = (𝑀‘𝑒) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀‘𝑒)) |
10 | 6, 9 | oveq12d 7240 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀‘𝑒))) |
11 | 10 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀‘𝑒))) |
12 | iccssxr 13031 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
13 | carsgval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
14 | 13 | ffvelrnda 6913 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
15 | 12, 14 | sselid 3907 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
16 | xaddid2 12845 | . . . . 5 ⊢ ((𝑀‘𝑒) ∈ ℝ* → (0 +𝑒 (𝑀‘𝑒)) = (𝑀‘𝑒)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀‘𝑒)) = (𝑀‘𝑒)) |
18 | 11, 17 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)) |
19 | 18 | ralrimiva 3106 | . 2 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)) |
20 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
21 | 20, 13 | elcarsg 31997 | . 2 ⊢ (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)))) |
22 | 2, 19, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ∖ cdif 3872 ∩ cin 3874 ⊆ wss 3875 ∅c0 4246 𝒫 cpw 4522 ⟶wf 6385 ‘cfv 6389 (class class class)co 7222 0cc0 10742 +∞cpnf 10877 ℝ*cxr 10879 +𝑒 cxad 12715 [,]cicc 12951 toCaraSigaccarsg 31993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-id 5464 df-po 5477 df-so 5478 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-ov 7225 df-oprab 7226 df-mpo 7227 df-1st 7770 df-2nd 7771 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-xadd 12718 df-icc 12955 df-carsg 31994 |
This theorem is referenced by: carsggect 32010 omsmeas 32015 |
Copyright terms: Public domain | W3C validator |