Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elcarsg Structured version   Visualization version   GIF version

Theorem 0elcarsg 34291
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
0elcarsg (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))

Proof of Theorem 0elcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 0ss 4351 . . 3 ∅ ⊆ 𝑂
21a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑂)
3 in0 4346 . . . . . . . 8 (𝑒 ∩ ∅) = ∅
43fveq2i 6825 . . . . . . 7 (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅)
5 baselcarsg.1 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
64, 5eqtrid 2776 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0)
7 dif0 4329 . . . . . . . 8 (𝑒 ∖ ∅) = 𝑒
87fveq2i 6825 . . . . . . 7 (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒)
98a1i 11 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒))
106, 9oveq12d 7367 . . . . 5 (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
1110adantr 480 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
12 iccssxr 13333 . . . . . 6 (0[,]+∞) ⊆ ℝ*
13 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1413ffvelcdmda 7018 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1512, 14sselid 3933 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
16 xaddlid 13144 . . . . 5 ((𝑀𝑒) ∈ ℝ* → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1715, 16syl 17 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1811, 17eqtrd 2764 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
1918ralrimiva 3121 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
20 carsgval.1 . . 3 (𝜑𝑂𝑉)
2120, 13elcarsg 34289 . 2 (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))))
222, 19, 21mpbir2and 713 1 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551  wf 6478  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  *cxr 11148   +𝑒 cxad 13012  [,]cicc 13251  toCaraSigaccarsg 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-xadd 13015  df-icc 13255  df-carsg 34286
This theorem is referenced by:  carsggect  34302  omsmeas  34307
  Copyright terms: Public domain W3C validator