Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elcarsg Structured version   Visualization version   GIF version

Theorem 0elcarsg 31999
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
0elcarsg (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))

Proof of Theorem 0elcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 0ss 4320 . . 3 ∅ ⊆ 𝑂
21a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑂)
3 in0 4315 . . . . . . . 8 (𝑒 ∩ ∅) = ∅
43fveq2i 6729 . . . . . . 7 (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅)
5 baselcarsg.1 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
64, 5syl5eq 2791 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0)
7 dif0 4296 . . . . . . . 8 (𝑒 ∖ ∅) = 𝑒
87fveq2i 6729 . . . . . . 7 (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒)
98a1i 11 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒))
106, 9oveq12d 7240 . . . . 5 (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
1110adantr 484 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
12 iccssxr 13031 . . . . . 6 (0[,]+∞) ⊆ ℝ*
13 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1413ffvelrnda 6913 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1512, 14sselid 3907 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
16 xaddid2 12845 . . . . 5 ((𝑀𝑒) ∈ ℝ* → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1715, 16syl 17 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1811, 17eqtrd 2778 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
1918ralrimiva 3106 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
20 carsgval.1 . . 3 (𝜑𝑂𝑉)
2120, 13elcarsg 31997 . 2 (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))))
222, 19, 21mpbir2and 713 1 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wral 3062  cdif 3872  cin 3874  wss 3875  c0 4246  𝒫 cpw 4522  wf 6385  cfv 6389  (class class class)co 7222  0cc0 10742  +∞cpnf 10877  *cxr 10879   +𝑒 cxad 12715  [,]cicc 12951  toCaraSigaccarsg 31993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-cnex 10798  ax-resscn 10799  ax-1cn 10800  ax-icn 10801  ax-addcl 10802  ax-addrcl 10803  ax-mulcl 10804  ax-mulrcl 10805  ax-mulcom 10806  ax-addass 10807  ax-mulass 10808  ax-distr 10809  ax-i2m1 10810  ax-1ne0 10811  ax-1rid 10812  ax-rnegex 10813  ax-rrecex 10814  ax-cnre 10815  ax-pre-lttri 10816  ax-pre-lttrn 10817  ax-pre-ltadd 10818
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-id 5464  df-po 5477  df-so 5478  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-ov 7225  df-oprab 7226  df-mpo 7227  df-1st 7770  df-2nd 7771  df-er 8400  df-en 8636  df-dom 8637  df-sdom 8638  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-xadd 12718  df-icc 12955  df-carsg 31994
This theorem is referenced by:  carsggect  32010  omsmeas  32015
  Copyright terms: Public domain W3C validator