Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elcarsg Structured version   Visualization version   GIF version

Theorem 0elcarsg 34320
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
0elcarsg (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))

Proof of Theorem 0elcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 0ss 4347 . . 3 ∅ ⊆ 𝑂
21a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑂)
3 in0 4342 . . . . . . . 8 (𝑒 ∩ ∅) = ∅
43fveq2i 6825 . . . . . . 7 (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅)
5 baselcarsg.1 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
64, 5eqtrid 2778 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0)
7 dif0 4325 . . . . . . . 8 (𝑒 ∖ ∅) = 𝑒
87fveq2i 6825 . . . . . . 7 (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒)
98a1i 11 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒))
106, 9oveq12d 7364 . . . . 5 (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
1110adantr 480 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
12 iccssxr 13330 . . . . . 6 (0[,]+∞) ⊆ ℝ*
13 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1413ffvelcdmda 7017 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1512, 14sselid 3927 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
16 xaddlid 13141 . . . . 5 ((𝑀𝑒) ∈ ℝ* → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1715, 16syl 17 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1811, 17eqtrd 2766 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
1918ralrimiva 3124 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
20 carsgval.1 . . 3 (𝜑𝑂𝑉)
2120, 13elcarsg 34318 . 2 (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))))
222, 19, 21mpbir2and 713 1 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145   +𝑒 cxad 13009  [,]cicc 13248  toCaraSigaccarsg 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-xadd 13012  df-icc 13252  df-carsg 34315
This theorem is referenced by:  carsggect  34331  omsmeas  34336
  Copyright terms: Public domain W3C validator