| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elcarsg | Structured version Visualization version GIF version | ||
| Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
| Ref | Expression |
|---|---|
| 0elcarsg | ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ 𝑂 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝑂) |
| 3 | in0 4370 | . . . . . . . 8 ⊢ (𝑒 ∩ ∅) = ∅ | |
| 4 | 3 | fveq2i 6879 | . . . . . . 7 ⊢ (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅) |
| 5 | baselcarsg.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
| 6 | 4, 5 | eqtrid 2782 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0) |
| 7 | dif0 4353 | . . . . . . . 8 ⊢ (𝑒 ∖ ∅) = 𝑒 | |
| 8 | 7 | fveq2i 6879 | . . . . . . 7 ⊢ (𝑀‘(𝑒 ∖ ∅)) = (𝑀‘𝑒) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀‘𝑒)) |
| 10 | 6, 9 | oveq12d 7423 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀‘𝑒))) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀‘𝑒))) |
| 12 | iccssxr 13447 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 13 | carsgval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 14 | 13 | ffvelcdmda 7074 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
| 15 | 12, 14 | sselid 3956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
| 16 | xaddlid 13258 | . . . . 5 ⊢ ((𝑀‘𝑒) ∈ ℝ* → (0 +𝑒 (𝑀‘𝑒)) = (𝑀‘𝑒)) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀‘𝑒)) = (𝑀‘𝑒)) |
| 18 | 11, 17 | eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)) |
| 19 | 18 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)) |
| 20 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 21 | 20, 13 | elcarsg 34337 | . 2 ⊢ (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀‘𝑒)))) |
| 22 | 2, 19, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 +𝑒 cxad 13126 [,]cicc 13365 toCaraSigaccarsg 34333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-xadd 13129 df-icc 13369 df-carsg 34334 |
| This theorem is referenced by: carsggect 34350 omsmeas 34355 |
| Copyright terms: Public domain | W3C validator |