![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elcarsg | Structured version Visualization version GIF version |
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | β’ (π β π β π) |
carsgval.2 | β’ (π β π:π« πβΆ(0[,]+β)) |
baselcarsg.1 | β’ (π β (πββ ) = 0) |
Ref | Expression |
---|---|
0elcarsg | β’ (π β β β (toCaraSigaβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . . 3 β’ β β π | |
2 | 1 | a1i 11 | . 2 β’ (π β β β π) |
3 | in0 4391 | . . . . . . . 8 β’ (π β© β ) = β | |
4 | 3 | fveq2i 6894 | . . . . . . 7 β’ (πβ(π β© β )) = (πββ ) |
5 | baselcarsg.1 | . . . . . . 7 β’ (π β (πββ ) = 0) | |
6 | 4, 5 | eqtrid 2784 | . . . . . 6 β’ (π β (πβ(π β© β )) = 0) |
7 | dif0 4372 | . . . . . . . 8 β’ (π β β ) = π | |
8 | 7 | fveq2i 6894 | . . . . . . 7 β’ (πβ(π β β )) = (πβπ) |
9 | 8 | a1i 11 | . . . . . 6 β’ (π β (πβ(π β β )) = (πβπ)) |
10 | 6, 9 | oveq12d 7429 | . . . . 5 β’ (π β ((πβ(π β© β )) +π (πβ(π β β ))) = (0 +π (πβπ))) |
11 | 10 | adantr 481 | . . . 4 β’ ((π β§ π β π« π) β ((πβ(π β© β )) +π (πβ(π β β ))) = (0 +π (πβπ))) |
12 | iccssxr 13411 | . . . . . 6 β’ (0[,]+β) β β* | |
13 | carsgval.2 | . . . . . . 7 β’ (π β π:π« πβΆ(0[,]+β)) | |
14 | 13 | ffvelcdmda 7086 | . . . . . 6 β’ ((π β§ π β π« π) β (πβπ) β (0[,]+β)) |
15 | 12, 14 | sselid 3980 | . . . . 5 β’ ((π β§ π β π« π) β (πβπ) β β*) |
16 | xaddlid 13225 | . . . . 5 β’ ((πβπ) β β* β (0 +π (πβπ)) = (πβπ)) | |
17 | 15, 16 | syl 17 | . . . 4 β’ ((π β§ π β π« π) β (0 +π (πβπ)) = (πβπ)) |
18 | 11, 17 | eqtrd 2772 | . . 3 β’ ((π β§ π β π« π) β ((πβ(π β© β )) +π (πβ(π β β ))) = (πβπ)) |
19 | 18 | ralrimiva 3146 | . 2 β’ (π β βπ β π« π((πβ(π β© β )) +π (πβ(π β β ))) = (πβπ)) |
20 | carsgval.1 | . . 3 β’ (π β π β π) | |
21 | 20, 13 | elcarsg 33590 | . 2 β’ (π β (β β (toCaraSigaβπ) β (β β π β§ βπ β π« π((πβ(π β© β )) +π (πβ(π β β ))) = (πβπ)))) |
22 | 2, 19, 21 | mpbir2and 711 | 1 β’ (π β β β (toCaraSigaβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β cdif 3945 β© cin 3947 β wss 3948 β c0 4322 π« cpw 4602 βΆwf 6539 βcfv 6543 (class class class)co 7411 0cc0 11112 +βcpnf 11249 β*cxr 11251 +π cxad 13094 [,]cicc 13331 toCaraSigaccarsg 33586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-xadd 13097 df-icc 13335 df-carsg 33587 |
This theorem is referenced by: carsggect 33603 omsmeas 33608 |
Copyright terms: Public domain | W3C validator |