Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elcarsg Structured version   Visualization version   GIF version

Theorem 0elcarsg 34305
Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
0elcarsg (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))

Proof of Theorem 0elcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 0ss 4366 . . 3 ∅ ⊆ 𝑂
21a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑂)
3 in0 4361 . . . . . . . 8 (𝑒 ∩ ∅) = ∅
43fveq2i 6864 . . . . . . 7 (𝑀‘(𝑒 ∩ ∅)) = (𝑀‘∅)
5 baselcarsg.1 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
64, 5eqtrid 2777 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∩ ∅)) = 0)
7 dif0 4344 . . . . . . . 8 (𝑒 ∖ ∅) = 𝑒
87fveq2i 6864 . . . . . . 7 (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒)
98a1i 11 . . . . . 6 (𝜑 → (𝑀‘(𝑒 ∖ ∅)) = (𝑀𝑒))
106, 9oveq12d 7408 . . . . 5 (𝜑 → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
1110adantr 480 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (0 +𝑒 (𝑀𝑒)))
12 iccssxr 13398 . . . . . 6 (0[,]+∞) ⊆ ℝ*
13 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1413ffvelcdmda 7059 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1512, 14sselid 3947 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
16 xaddlid 13209 . . . . 5 ((𝑀𝑒) ∈ ℝ* → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1715, 16syl 17 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (0 +𝑒 (𝑀𝑒)) = (𝑀𝑒))
1811, 17eqtrd 2765 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
1918ralrimiva 3126 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))
20 carsgval.1 . . 3 (𝜑𝑂𝑉)
2120, 13elcarsg 34303 . 2 (𝜑 → (∅ ∈ (toCaraSiga‘𝑀) ↔ (∅ ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∅)) +𝑒 (𝑀‘(𝑒 ∖ ∅))) = (𝑀𝑒))))
222, 19, 21mpbir2and 713 1 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  *cxr 11214   +𝑒 cxad 13077  [,]cicc 13316  toCaraSigaccarsg 34299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-xadd 13080  df-icc 13320  df-carsg 34300
This theorem is referenced by:  carsggect  34316  omsmeas  34321
  Copyright terms: Public domain W3C validator