| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baselcarsg | Structured version Visualization version GIF version | ||
| Description: The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
| Ref | Expression |
|---|---|
| baselcarsg | ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3970 | . . 3 ⊢ (𝜑 → 𝑂 ⊆ 𝑂) | |
| 2 | elpwi 4570 | . . . . . . . . 9 ⊢ (𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂) | |
| 3 | 2 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ⊆ 𝑂) |
| 4 | dfss2 3932 | . . . . . . . 8 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∩ 𝑂) = 𝑒) | |
| 5 | 3, 4 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ 𝑂) = 𝑒) |
| 6 | 5 | fveq2d 6862 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ 𝑂)) = (𝑀‘𝑒)) |
| 7 | ssdif0 4329 | . . . . . . . . 9 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∖ 𝑂) = ∅) | |
| 8 | 3, 7 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ 𝑂) = ∅) |
| 9 | 8 | fveq2d 6862 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = (𝑀‘∅)) |
| 10 | baselcarsg.1 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0) |
| 12 | 9, 11 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = 0) |
| 13 | 6, 12 | oveq12d 7405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = ((𝑀‘𝑒) +𝑒 0)) |
| 14 | iccssxr 13391 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | carsgval.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
| 18 | 16, 17 | ffvelcdmd 7057 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
| 19 | 14, 18 | sselid 3944 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
| 20 | xaddrid 13201 | . . . . . 6 ⊢ ((𝑀‘𝑒) ∈ ℝ* → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) |
| 22 | 13, 21 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
| 23 | 22 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
| 24 | 1, 23 | jca 511 | . 2 ⊢ (𝜑 → (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒))) |
| 25 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 26 | 25, 15 | elcarsg 34296 | . 2 ⊢ (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ↔ (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)))) |
| 27 | 24, 26 | mpbird 257 | 1 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 +𝑒 cxad 13070 [,]cicc 13309 toCaraSigaccarsg 34292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-xadd 13073 df-icc 13313 df-carsg 34293 |
| This theorem is referenced by: carsguni 34299 fiunelcarsg 34307 carsgsiga 34313 |
| Copyright terms: Public domain | W3C validator |