| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baselcarsg | Structured version Visualization version GIF version | ||
| Description: The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
| Ref | Expression |
|---|---|
| baselcarsg | ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3967 | . . 3 ⊢ (𝜑 → 𝑂 ⊆ 𝑂) | |
| 2 | elpwi 4566 | . . . . . . . . 9 ⊢ (𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂) | |
| 3 | 2 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ⊆ 𝑂) |
| 4 | dfss2 3929 | . . . . . . . 8 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∩ 𝑂) = 𝑒) | |
| 5 | 3, 4 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ 𝑂) = 𝑒) |
| 6 | 5 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ 𝑂)) = (𝑀‘𝑒)) |
| 7 | ssdif0 4325 | . . . . . . . . 9 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∖ 𝑂) = ∅) | |
| 8 | 3, 7 | sylib 218 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ 𝑂) = ∅) |
| 9 | 8 | fveq2d 6844 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = (𝑀‘∅)) |
| 10 | baselcarsg.1 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0) |
| 12 | 9, 11 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = 0) |
| 13 | 6, 12 | oveq12d 7387 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = ((𝑀‘𝑒) +𝑒 0)) |
| 14 | iccssxr 13367 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | carsgval.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
| 18 | 16, 17 | ffvelcdmd 7039 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
| 19 | 14, 18 | sselid 3941 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
| 20 | xaddrid 13177 | . . . . . 6 ⊢ ((𝑀‘𝑒) ∈ ℝ* → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) |
| 22 | 13, 21 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
| 23 | 22 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
| 24 | 1, 23 | jca 511 | . 2 ⊢ (𝜑 → (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒))) |
| 25 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 26 | 25, 15 | elcarsg 34289 | . 2 ⊢ (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ↔ (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)))) |
| 27 | 24, 26 | mpbird 257 | 1 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 +𝑒 cxad 13046 [,]cicc 13285 toCaraSigaccarsg 34285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-xadd 13049 df-icc 13289 df-carsg 34286 |
| This theorem is referenced by: carsguni 34292 fiunelcarsg 34300 carsgsiga 34306 |
| Copyright terms: Public domain | W3C validator |