Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baselcarsg Structured version   Visualization version   GIF version

Theorem baselcarsg 32273
Description: The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
baselcarsg (𝜑𝑂 ∈ (toCaraSiga‘𝑀))

Proof of Theorem baselcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3944 . . 3 (𝜑𝑂𝑂)
2 elpwi 4542 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
32adantl 482 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
4 df-ss 3904 . . . . . . . 8 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
53, 4sylib 217 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
65fveq2d 6778 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑂)) = (𝑀𝑒))
7 ssdif0 4297 . . . . . . . . 9 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
83, 7sylib 217 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
98fveq2d 6778 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑂)) = (𝑀‘∅))
10 baselcarsg.1 . . . . . . . 8 (𝜑 → (𝑀‘∅) = 0)
1110adantr 481 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
129, 11eqtrd 2778 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑂)) = 0)
136, 12oveq12d 7293 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = ((𝑀𝑒) +𝑒 0))
14 iccssxr 13162 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
15 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1615adantr 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
17 simpr 485 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
1816, 17ffvelrnd 6962 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1914, 18sselid 3919 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
20 xaddid1 12975 . . . . . 6 ((𝑀𝑒) ∈ ℝ* → ((𝑀𝑒) +𝑒 0) = (𝑀𝑒))
2119, 20syl 17 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀𝑒) +𝑒 0) = (𝑀𝑒))
2213, 21eqtrd 2778 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒))
2322ralrimiva 3103 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒))
241, 23jca 512 . 2 (𝜑 → (𝑂𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒)))
25 carsgval.1 . . 3 (𝜑𝑂𝑉)
2625, 15elcarsg 32272 . 2 (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ↔ (𝑂𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒))))
2724, 26mpbird 256 1 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  *cxr 11008   +𝑒 cxad 12846  [,]cicc 13082  toCaraSigaccarsg 32268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-xadd 12849  df-icc 13086  df-carsg 32269
This theorem is referenced by:  carsguni  32275  fiunelcarsg  32283  carsgsiga  32289
  Copyright terms: Public domain W3C validator