Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > baselcarsg | Structured version Visualization version GIF version |
Description: The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
baselcarsg.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
Ref | Expression |
---|---|
baselcarsg | ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3940 | . . 3 ⊢ (𝜑 → 𝑂 ⊆ 𝑂) | |
2 | elpwi 4539 | . . . . . . . . 9 ⊢ (𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂) | |
3 | 2 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ⊆ 𝑂) |
4 | df-ss 3900 | . . . . . . . 8 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∩ 𝑂) = 𝑒) | |
5 | 3, 4 | sylib 217 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ 𝑂) = 𝑒) |
6 | 5 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ 𝑂)) = (𝑀‘𝑒)) |
7 | ssdif0 4294 | . . . . . . . . 9 ⊢ (𝑒 ⊆ 𝑂 ↔ (𝑒 ∖ 𝑂) = ∅) | |
8 | 3, 7 | sylib 217 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ 𝑂) = ∅) |
9 | 8 | fveq2d 6760 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = (𝑀‘∅)) |
10 | baselcarsg.1 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0) |
12 | 9, 11 | eqtrd 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ 𝑂)) = 0) |
13 | 6, 12 | oveq12d 7273 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = ((𝑀‘𝑒) +𝑒 0)) |
14 | iccssxr 13091 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
15 | carsgval.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
17 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
18 | 16, 17 | ffvelrnd 6944 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
19 | 14, 18 | sselid 3915 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
20 | xaddid1 12904 | . . . . . 6 ⊢ ((𝑀‘𝑒) ∈ ℝ* → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘𝑒) +𝑒 0) = (𝑀‘𝑒)) |
22 | 13, 21 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
23 | 22 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)) |
24 | 1, 23 | jca 511 | . 2 ⊢ (𝜑 → (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒))) |
25 | carsgval.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
26 | 25, 15 | elcarsg 32172 | . 2 ⊢ (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ↔ (𝑂 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑂)) +𝑒 (𝑀‘(𝑒 ∖ 𝑂))) = (𝑀‘𝑒)))) |
27 | 24, 26 | mpbird 256 | 1 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 +𝑒 cxad 12775 [,]cicc 13011 toCaraSigaccarsg 32168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-xadd 12778 df-icc 13015 df-carsg 32169 |
This theorem is referenced by: carsguni 32175 fiunelcarsg 32183 carsgsiga 32189 |
Copyright terms: Public domain | W3C validator |