Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baselcarsg Structured version   Visualization version   GIF version

Theorem baselcarsg 34271
Description: The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
baselcarsg.1 (𝜑 → (𝑀‘∅) = 0)
Assertion
Ref Expression
baselcarsg (𝜑𝑂 ∈ (toCaraSiga‘𝑀))

Proof of Theorem baselcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ssidd 4032 . . 3 (𝜑𝑂𝑂)
2 elpwi 4629 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
32adantl 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
4 dfss2 3994 . . . . . . . 8 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
53, 4sylib 218 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
65fveq2d 6924 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑂)) = (𝑀𝑒))
7 ssdif0 4389 . . . . . . . . 9 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
83, 7sylib 218 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
98fveq2d 6924 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑂)) = (𝑀‘∅))
10 baselcarsg.1 . . . . . . . 8 (𝜑 → (𝑀‘∅) = 0)
1110adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
129, 11eqtrd 2780 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑂)) = 0)
136, 12oveq12d 7466 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = ((𝑀𝑒) +𝑒 0))
14 iccssxr 13490 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
15 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1615adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
17 simpr 484 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
1816, 17ffvelcdmd 7119 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
1914, 18sselid 4006 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
20 xaddrid 13303 . . . . . 6 ((𝑀𝑒) ∈ ℝ* → ((𝑀𝑒) +𝑒 0) = (𝑀𝑒))
2119, 20syl 17 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀𝑒) +𝑒 0) = (𝑀𝑒))
2213, 21eqtrd 2780 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒))
2322ralrimiva 3152 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒))
241, 23jca 511 . 2 (𝜑 → (𝑂𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒)))
25 carsgval.1 . . 3 (𝜑𝑂𝑉)
2625, 15elcarsg 34270 . 2 (𝜑 → (𝑂 ∈ (toCaraSiga‘𝑀) ↔ (𝑂𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑂)) +𝑒 (𝑀‘(𝑒𝑂))) = (𝑀𝑒))))
2724, 26mpbird 257 1 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  *cxr 11323   +𝑒 cxad 13173  [,]cicc 13410  toCaraSigaccarsg 34266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-xadd 13176  df-icc 13414  df-carsg 34267
This theorem is referenced by:  carsguni  34273  fiunelcarsg  34281  carsgsiga  34287
  Copyright terms: Public domain W3C validator