MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimopn Structured version   Visualization version   GIF version

Theorem flimopn 23479
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimopn ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹))))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝑋

Proof of Theorem flimopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elflim 23475 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹)))
2 dfss3 3971 . . . 4 (((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹 ↔ βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹)
3 topontop 22415 . . . . . . . . . . 11 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
43ad2antrr 725 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ 𝐽 ∈ Top)
5 opnneip 22623 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ 𝐴 ∈ π‘₯) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝐴}))
653expb 1121 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (π‘₯ ∈ 𝐽 ∧ 𝐴 ∈ π‘₯)) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝐴}))
74, 6sylan 581 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘₯ ∈ 𝐽 ∧ 𝐴 ∈ π‘₯)) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝐴}))
8 eleq1 2822 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ (𝑦 ∈ 𝐹 ↔ π‘₯ ∈ 𝐹))
98rspcv 3609 . . . . . . . . 9 (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝐴}) β†’ (βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹 β†’ π‘₯ ∈ 𝐹))
107, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ (π‘₯ ∈ 𝐽 ∧ 𝐴 ∈ π‘₯)) β†’ (βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹 β†’ π‘₯ ∈ 𝐹))
1110expr 458 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ (𝐴 ∈ π‘₯ β†’ (βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹 β†’ π‘₯ ∈ 𝐹)))
1211com23 86 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ (βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹 β†’ (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹)))
1312ralrimdva 3155 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹 β†’ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹)))
14 simpr 486 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴}))
153ad3antrrr 729 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝐽 ∈ Top)
16 simplr 768 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝐴 ∈ 𝑋)
17 toponuni 22416 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
1817ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑋 = βˆͺ 𝐽)
1916, 18eleqtrd 2836 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝐴 ∈ βˆͺ 𝐽)
2019snssd 4813 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ {𝐴} βŠ† βˆͺ 𝐽)
21 eqid 2733 . . . . . . . . . . . . 13 βˆͺ 𝐽 = βˆͺ 𝐽
2221neii1 22610 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑦 βŠ† βˆͺ 𝐽)
234, 22sylan 581 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑦 βŠ† βˆͺ 𝐽)
2421neiint 22608 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝐴} βŠ† βˆͺ 𝐽 ∧ 𝑦 βŠ† βˆͺ 𝐽) β†’ (𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴}) ↔ {𝐴} βŠ† ((intβ€˜π½)β€˜π‘¦)))
2515, 20, 23, 24syl3anc 1372 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ (𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴}) ↔ {𝐴} βŠ† ((intβ€˜π½)β€˜π‘¦)))
2614, 25mpbid 231 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ {𝐴} βŠ† ((intβ€˜π½)β€˜π‘¦))
27 snssg 4788 . . . . . . . . . 10 (𝐴 ∈ 𝑋 β†’ (𝐴 ∈ ((intβ€˜π½)β€˜π‘¦) ↔ {𝐴} βŠ† ((intβ€˜π½)β€˜π‘¦)))
2827ad2antlr 726 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ (𝐴 ∈ ((intβ€˜π½)β€˜π‘¦) ↔ {𝐴} βŠ† ((intβ€˜π½)β€˜π‘¦)))
2926, 28mpbird 257 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝐴 ∈ ((intβ€˜π½)β€˜π‘¦))
3021ntropn 22553 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑦 βŠ† βˆͺ 𝐽) β†’ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐽)
3115, 23, 30syl2anc 585 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐽)
32 eleq2 2823 . . . . . . . . . . 11 (π‘₯ = ((intβ€˜π½)β€˜π‘¦) β†’ (𝐴 ∈ π‘₯ ↔ 𝐴 ∈ ((intβ€˜π½)β€˜π‘¦)))
33 eleq1 2822 . . . . . . . . . . 11 (π‘₯ = ((intβ€˜π½)β€˜π‘¦) β†’ (π‘₯ ∈ 𝐹 ↔ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐹))
3432, 33imbi12d 345 . . . . . . . . . 10 (π‘₯ = ((intβ€˜π½)β€˜π‘¦) β†’ ((𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) ↔ (𝐴 ∈ ((intβ€˜π½)β€˜π‘¦) β†’ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐹)))
3534rspcv 3609 . . . . . . . . 9 (((intβ€˜π½)β€˜π‘¦) ∈ 𝐽 β†’ (βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) β†’ (𝐴 ∈ ((intβ€˜π½)β€˜π‘¦) β†’ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐹)))
3631, 35syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ (βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) β†’ (𝐴 ∈ ((intβ€˜π½)β€˜π‘¦) β†’ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐹)))
3729, 36mpid 44 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ (βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) β†’ ((intβ€˜π½)β€˜π‘¦) ∈ 𝐹))
38 simpllr 775 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝐹 ∈ (Filβ€˜π‘‹))
3921ntrss2 22561 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦 βŠ† βˆͺ 𝐽) β†’ ((intβ€˜π½)β€˜π‘¦) βŠ† 𝑦)
4015, 23, 39syl2anc 585 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ ((intβ€˜π½)β€˜π‘¦) βŠ† 𝑦)
4123, 18sseqtrrd 4024 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑦 βŠ† 𝑋)
42 filss 23357 . . . . . . . . . 10 ((𝐹 ∈ (Filβ€˜π‘‹) ∧ (((intβ€˜π½)β€˜π‘¦) ∈ 𝐹 ∧ 𝑦 βŠ† 𝑋 ∧ ((intβ€˜π½)β€˜π‘¦) βŠ† 𝑦)) β†’ 𝑦 ∈ 𝐹)
43423exp2 1355 . . . . . . . . 9 (𝐹 ∈ (Filβ€˜π‘‹) β†’ (((intβ€˜π½)β€˜π‘¦) ∈ 𝐹 β†’ (𝑦 βŠ† 𝑋 β†’ (((intβ€˜π½)β€˜π‘¦) βŠ† 𝑦 β†’ 𝑦 ∈ 𝐹))))
4443com24 95 . . . . . . . 8 (𝐹 ∈ (Filβ€˜π‘‹) β†’ (((intβ€˜π½)β€˜π‘¦) βŠ† 𝑦 β†’ (𝑦 βŠ† 𝑋 β†’ (((intβ€˜π½)β€˜π‘¦) ∈ 𝐹 β†’ 𝑦 ∈ 𝐹))))
4538, 40, 41, 44syl3c 66 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ (((intβ€˜π½)β€˜π‘¦) ∈ 𝐹 β†’ 𝑦 ∈ 𝐹))
4637, 45syld 47 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ (βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) β†’ 𝑦 ∈ 𝐹))
4746ralrimdva 3155 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) β†’ βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹))
4813, 47impbid 211 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ((neiβ€˜π½)β€˜{𝐴})𝑦 ∈ 𝐹 ↔ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹)))
492, 48bitrid 283 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ (((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹 ↔ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹)))
5049pm5.32da 580 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ ((𝐴 ∈ 𝑋 ∧ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹))))
511, 50bitrd 279 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   βŠ† wss 3949  {csn 4629  βˆͺ cuni 4909  β€˜cfv 6544  (class class class)co 7409  Topctop 22395  TopOnctopon 22412  intcnt 22521  neicnei 22601  Filcfil 23349   fLim cflim 23438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-fbas 20941  df-top 22396  df-topon 22413  df-ntr 22524  df-nei 22602  df-fil 23350  df-flim 23443
This theorem is referenced by:  fbflim  23480  flimrest  23487  flimsncls  23490  isflf  23497  cnpflfi  23503  flimfnfcls  23532  alexsublem  23548  cfilfcls  24791  iscmet3lem2  24809
  Copyright terms: Public domain W3C validator