MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimopn Structured version   Visualization version   GIF version

Theorem flimopn 23984
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝑋

Proof of Theorem flimopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elflim 23980 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
2 dfss3 3971 . . . 4 (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹)
3 topontop 22920 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 opnneip 23128 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑥𝐽𝐴𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
653expb 1120 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥𝐽𝐴𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
74, 6sylan 580 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑥𝐽𝐴𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
8 eleq1 2828 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦𝐹𝑥𝐹))
98rspcv 3617 . . . . . . . . 9 (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹))
107, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑥𝐽𝐴𝑥)) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹))
1110expr 456 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝐴𝑥 → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹)))
1211com23 86 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 → (𝐴𝑥𝑥𝐹)))
1312ralrimdva 3153 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 → ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
14 simpr 484 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
153ad3antrrr 730 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
16 simplr 768 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴𝑋)
17 toponuni 22921 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1817ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
1916, 18eleqtrd 2842 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 𝐽)
2019snssd 4808 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
21 eqid 2736 . . . . . . . . . . . . 13 𝐽 = 𝐽
2221neii1 23115 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 𝐽)
234, 22sylan 580 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 𝐽)
2421neiint 23113 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑦 𝐽) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2515, 20, 23, 24syl3anc 1372 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2614, 25mpbid 232 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑦))
27 snssg 4782 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2827ad2antlr 727 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2926, 28mpbird 257 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑦))
3021ntropn 23058 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑦 𝐽) → ((int‘𝐽)‘𝑦) ∈ 𝐽)
3115, 23, 30syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ∈ 𝐽)
32 eleq2 2829 . . . . . . . . . . 11 (𝑥 = ((int‘𝐽)‘𝑦) → (𝐴𝑥𝐴 ∈ ((int‘𝐽)‘𝑦)))
33 eleq1 2828 . . . . . . . . . . 11 (𝑥 = ((int‘𝐽)‘𝑦) → (𝑥𝐹 ↔ ((int‘𝐽)‘𝑦) ∈ 𝐹))
3432, 33imbi12d 344 . . . . . . . . . 10 (𝑥 = ((int‘𝐽)‘𝑦) → ((𝐴𝑥𝑥𝐹) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3534rspcv 3617 . . . . . . . . 9 (((int‘𝐽)‘𝑦) ∈ 𝐽 → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3631, 35syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3729, 36mpid 44 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → ((int‘𝐽)‘𝑦) ∈ 𝐹))
38 simpllr 775 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘𝑋))
3921ntrss2 23066 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦 𝐽) → ((int‘𝐽)‘𝑦) ⊆ 𝑦)
4015, 23, 39syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ⊆ 𝑦)
4123, 18sseqtrrd 4020 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝑋)
42 filss 23862 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝑋 ∧ ((int‘𝐽)‘𝑦) ⊆ 𝑦)) → 𝑦𝐹)
43423exp2 1354 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → (𝑦𝑋 → (((int‘𝐽)‘𝑦) ⊆ 𝑦𝑦𝐹))))
4443com24 95 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → (𝑦𝑋 → (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝐹))))
4538, 40, 41, 44syl3c 66 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝐹))
4637, 45syld 47 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → 𝑦𝐹))
4746ralrimdva 3153 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹))
4813, 47impbid 212 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 ↔ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
492, 48bitrid 283 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
5049pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
511, 50bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wss 3950  {csn 4625   cuni 4906  cfv 6560  (class class class)co 7432  Topctop 22900  TopOnctopon 22917  intcnt 23026  neicnei 23106  Filcfil 23854   fLim cflim 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-fbas 21362  df-top 22901  df-topon 22918  df-ntr 23029  df-nei 23107  df-fil 23855  df-flim 23948
This theorem is referenced by:  fbflim  23985  flimrest  23992  flimsncls  23995  isflf  24002  cnpflfi  24008  flimfnfcls  24037  alexsublem  24053  cfilfcls  25309  iscmet3lem2  25327
  Copyright terms: Public domain W3C validator