Step | Hyp | Ref
| Expression |
1 | | elflim 23122 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
2 | | dfss3 3909 |
. . . 4
⊢
(((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹) |
3 | | topontop 22062 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
4 | 3 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
5 | | opnneip 22270 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) |
6 | 5 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) |
7 | 4, 6 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) |
8 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐹 ↔ 𝑥 ∈ 𝐹)) |
9 | 8 | rspcv 3557 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹)) |
10 | 7, 9 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥)) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹)) |
11 | 10 | expr 457 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝐴 ∈ 𝑥 → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹))) |
12 | 11 | com23 86 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
13 | 12 | ralrimdva 3106 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
14 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) |
15 | 3 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top) |
16 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ 𝑋) |
17 | | toponuni 22063 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
18 | 17 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = ∪ 𝐽) |
19 | 16, 18 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ∪ 𝐽) |
20 | 19 | snssd 4742 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ∪ 𝐽) |
21 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
22 | 21 | neii1 22257 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ⊆ ∪ 𝐽) |
23 | 4, 22 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ⊆ ∪ 𝐽) |
24 | 21 | neiint 22255 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑦 ⊆ ∪ 𝐽)
→ (𝑦 ∈
((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
25 | 15, 20, 23, 24 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
26 | 14, 25 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑦)) |
27 | | snssg 4718 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
28 | 27 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
29 | 26, 28 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑦)) |
30 | 21 | ntropn 22200 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑦) ∈ 𝐽) |
31 | 15, 23, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ∈ 𝐽) |
32 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = ((int‘𝐽)‘𝑦) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ((int‘𝐽)‘𝑦))) |
33 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = ((int‘𝐽)‘𝑦) → (𝑥 ∈ 𝐹 ↔ ((int‘𝐽)‘𝑦) ∈ 𝐹)) |
34 | 32, 33 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = ((int‘𝐽)‘𝑦) → ((𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹))) |
35 | 34 | rspcv 3557 |
. . . . . . . . 9
⊢
(((int‘𝐽)‘𝑦) ∈ 𝐽 → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹))) |
36 | 31, 35 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹))) |
37 | 29, 36 | mpid 44 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → ((int‘𝐽)‘𝑦) ∈ 𝐹)) |
38 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘𝑋)) |
39 | 21 | ntrss2 22208 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑦) ⊆ 𝑦) |
40 | 15, 23, 39 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ⊆ 𝑦) |
41 | 23, 18 | sseqtrrd 3962 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ⊆ 𝑋) |
42 | | filss 23004 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (((int‘𝐽)‘𝑦) ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑦) ⊆ 𝑦)) → 𝑦 ∈ 𝐹) |
43 | 42 | 3exp2 1353 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → (𝑦 ⊆ 𝑋 → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → 𝑦 ∈ 𝐹)))) |
44 | 43 | com24 95 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → (𝑦 ⊆ 𝑋 → (((int‘𝐽)‘𝑦) ∈ 𝐹 → 𝑦 ∈ 𝐹)))) |
45 | 38, 40, 41, 44 | syl3c 66 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → 𝑦 ∈ 𝐹)) |
46 | 37, 45 | syld 47 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → 𝑦 ∈ 𝐹)) |
47 | 46 | ralrimdva 3106 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹)) |
48 | 13, 47 | impbid 211 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
49 | 2, 48 | bitrid 282 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
50 | 49 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |
51 | 1, 50 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |