MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimopn Structured version   Visualization version   GIF version

Theorem flimopn 22577
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝑋

Proof of Theorem flimopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elflim 22573 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
2 dfss3 3955 . . . 4 (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹)
3 topontop 21515 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 724 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 opnneip 21721 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑥𝐽𝐴𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
653expb 1116 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥𝐽𝐴𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
74, 6sylan 582 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑥𝐽𝐴𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
8 eleq1 2900 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦𝐹𝑥𝐹))
98rspcv 3617 . . . . . . . . 9 (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹))
107, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑥𝐽𝐴𝑥)) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹))
1110expr 459 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝐴𝑥 → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹)))
1211com23 86 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 → (𝐴𝑥𝑥𝐹)))
1312ralrimdva 3189 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 → ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
14 simpr 487 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
153ad3antrrr 728 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
16 simplr 767 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴𝑋)
17 toponuni 21516 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1817ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
1916, 18eleqtrd 2915 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 𝐽)
2019snssd 4735 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
21 eqid 2821 . . . . . . . . . . . . 13 𝐽 = 𝐽
2221neii1 21708 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 𝐽)
234, 22sylan 582 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 𝐽)
2421neiint 21706 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑦 𝐽) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2515, 20, 23, 24syl3anc 1367 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2614, 25mpbid 234 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑦))
27 snssg 4710 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2827ad2antlr 725 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2926, 28mpbird 259 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑦))
3021ntropn 21651 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑦 𝐽) → ((int‘𝐽)‘𝑦) ∈ 𝐽)
3115, 23, 30syl2anc 586 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ∈ 𝐽)
32 eleq2 2901 . . . . . . . . . . 11 (𝑥 = ((int‘𝐽)‘𝑦) → (𝐴𝑥𝐴 ∈ ((int‘𝐽)‘𝑦)))
33 eleq1 2900 . . . . . . . . . . 11 (𝑥 = ((int‘𝐽)‘𝑦) → (𝑥𝐹 ↔ ((int‘𝐽)‘𝑦) ∈ 𝐹))
3432, 33imbi12d 347 . . . . . . . . . 10 (𝑥 = ((int‘𝐽)‘𝑦) → ((𝐴𝑥𝑥𝐹) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3534rspcv 3617 . . . . . . . . 9 (((int‘𝐽)‘𝑦) ∈ 𝐽 → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3631, 35syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3729, 36mpid 44 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → ((int‘𝐽)‘𝑦) ∈ 𝐹))
38 simpllr 774 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘𝑋))
3921ntrss2 21659 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦 𝐽) → ((int‘𝐽)‘𝑦) ⊆ 𝑦)
4015, 23, 39syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ⊆ 𝑦)
4123, 18sseqtrrd 4007 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝑋)
42 filss 22455 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝑋 ∧ ((int‘𝐽)‘𝑦) ⊆ 𝑦)) → 𝑦𝐹)
43423exp2 1350 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → (𝑦𝑋 → (((int‘𝐽)‘𝑦) ⊆ 𝑦𝑦𝐹))))
4443com24 95 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → (𝑦𝑋 → (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝐹))))
4538, 40, 41, 44syl3c 66 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝐹))
4637, 45syld 47 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → 𝑦𝐹))
4746ralrimdva 3189 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹))
4813, 47impbid 214 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 ↔ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
492, 48syl5bb 285 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
5049pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
511, 50bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3935  {csn 4560   cuni 4831  cfv 6349  (class class class)co 7150  Topctop 21495  TopOnctopon 21512  intcnt 21619  neicnei 21699  Filcfil 22447   fLim cflim 22536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20536  df-top 21496  df-topon 21513  df-ntr 21622  df-nei 21700  df-fil 22448  df-flim 22541
This theorem is referenced by:  fbflim  22578  flimrest  22585  flimsncls  22588  isflf  22595  cnpflfi  22601  flimfnfcls  22630  alexsublem  22646  cfilfcls  23871  iscmet3lem2  23889
  Copyright terms: Public domain W3C validator