| Step | Hyp | Ref
| Expression |
| 1 | | elflim 23980 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 2 | | dfss3 3971 |
. . . 4
⊢
(((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹) |
| 3 | | topontop 22920 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 4 | 3 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
| 5 | | opnneip 23128 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) |
| 6 | 5 | 3expb 1120 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) |
| 7 | 4, 6 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) |
| 8 | | eleq1 2828 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐹 ↔ 𝑥 ∈ 𝐹)) |
| 9 | 8 | rspcv 3617 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹)) |
| 10 | 7, 9 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥)) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹)) |
| 11 | 10 | expr 456 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝐴 ∈ 𝑥 → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹))) |
| 12 | 11 | com23 86 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
| 13 | 12 | ralrimdva 3153 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 → ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
| 14 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) |
| 15 | 3 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top) |
| 16 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ 𝑋) |
| 17 | | toponuni 22921 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 18 | 17 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = ∪ 𝐽) |
| 19 | 16, 18 | eleqtrd 2842 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ∪ 𝐽) |
| 20 | 19 | snssd 4808 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ∪ 𝐽) |
| 21 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 22 | 21 | neii1 23115 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ⊆ ∪ 𝐽) |
| 23 | 4, 22 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ⊆ ∪ 𝐽) |
| 24 | 21 | neiint 23113 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑦 ⊆ ∪ 𝐽)
→ (𝑦 ∈
((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
| 25 | 15, 20, 23, 24 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
| 26 | 14, 25 | mpbid 232 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑦)) |
| 27 | | snssg 4782 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
| 28 | 27 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦))) |
| 29 | 26, 28 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑦)) |
| 30 | 21 | ntropn 23058 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑦) ∈ 𝐽) |
| 31 | 15, 23, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ∈ 𝐽) |
| 32 | | eleq2 2829 |
. . . . . . . . . . 11
⊢ (𝑥 = ((int‘𝐽)‘𝑦) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ((int‘𝐽)‘𝑦))) |
| 33 | | eleq1 2828 |
. . . . . . . . . . 11
⊢ (𝑥 = ((int‘𝐽)‘𝑦) → (𝑥 ∈ 𝐹 ↔ ((int‘𝐽)‘𝑦) ∈ 𝐹)) |
| 34 | 32, 33 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = ((int‘𝐽)‘𝑦) → ((𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹))) |
| 35 | 34 | rspcv 3617 |
. . . . . . . . 9
⊢
(((int‘𝐽)‘𝑦) ∈ 𝐽 → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹))) |
| 36 | 31, 35 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹))) |
| 37 | 29, 36 | mpid 44 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → ((int‘𝐽)‘𝑦) ∈ 𝐹)) |
| 38 | | simpllr 775 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘𝑋)) |
| 39 | 21 | ntrss2 23066 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑦) ⊆ 𝑦) |
| 40 | 15, 23, 39 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ⊆ 𝑦) |
| 41 | 23, 18 | sseqtrrd 4020 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ⊆ 𝑋) |
| 42 | | filss 23862 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (((int‘𝐽)‘𝑦) ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑦) ⊆ 𝑦)) → 𝑦 ∈ 𝐹) |
| 43 | 42 | 3exp2 1354 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → (𝑦 ⊆ 𝑋 → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → 𝑦 ∈ 𝐹)))) |
| 44 | 43 | com24 95 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → (𝑦 ⊆ 𝑋 → (((int‘𝐽)‘𝑦) ∈ 𝐹 → 𝑦 ∈ 𝐹)))) |
| 45 | 38, 40, 41, 44 | syl3c 66 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → 𝑦 ∈ 𝐹)) |
| 46 | 37, 45 | syld 47 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → 𝑦 ∈ 𝐹)) |
| 47 | 46 | ralrimdva 3153 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹)) |
| 48 | 13, 47 | impbid 212 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦 ∈ 𝐹 ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
| 49 | 2, 48 | bitrid 283 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹))) |
| 50 | 49 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |
| 51 | 1, 50 | bitrd 279 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |