| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version | ||
| Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8988 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | nnon 7865 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 3 | ensym 9015 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
| 4 | isnumi 9958 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
| 6 | 5 | rexlimiva 3133 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 dom cdm 5654 Oncon0 6352 ωcom 7859 ≈ cen 8954 Fincfn 8957 cardccrd 9947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-om 7860 df-er 8717 df-en 8958 df-fin 8961 df-card 9951 |
| This theorem is referenced by: ficardom 9973 ficardid 9974 fidomtri 10005 numwdom 10071 fodomfi2 10072 dfac12k 10160 ficardun2 10214 pwsdompw 10215 ackbij2 10254 sdom2en01 10314 dfacfin7 10411 fin1a2lem9 10420 domtriomlem 10454 zornn0g 10517 canthnum 10661 pwfseqlem4 10674 uzindi 13998 hashkf 14348 hashgval 14349 hashen 14363 hashdom 14395 symggen 19449 pgpfac1lem5 20060 fiufl 23852 fineqvacALT 35075 finixpnum 37575 poimirlem32 37622 ttac 43007 |
| Copyright terms: Public domain | W3C validator |