MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finnum Structured version   Visualization version   GIF version

Theorem finnum 9988
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
finnum (𝐴 ∈ Fin → 𝐴 ∈ dom card)

Proof of Theorem finnum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 9016 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 nnon 7893 . . . 4 (𝑥 ∈ ω → 𝑥 ∈ On)
3 ensym 9043 . . . 4 (𝐴𝑥𝑥𝐴)
4 isnumi 9986 . . . 4 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
52, 3, 4syl2an 596 . . 3 ((𝑥 ∈ ω ∧ 𝐴𝑥) → 𝐴 ∈ dom card)
65rexlimiva 3147 . 2 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ dom card)
71, 6sylbi 217 1 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wrex 3070   class class class wbr 5143  dom cdm 5685  Oncon0 6384  ωcom 7887  cen 8982  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-om 7888  df-er 8745  df-en 8986  df-fin 8989  df-card 9979
This theorem is referenced by:  ficardom  10001  ficardid  10002  fidomtri  10033  numwdom  10099  fodomfi2  10100  dfac12k  10188  ficardun2  10242  pwsdompw  10243  ackbij2  10282  sdom2en01  10342  dfacfin7  10439  fin1a2lem9  10448  domtriomlem  10482  zornn0g  10545  canthnum  10689  pwfseqlem4  10702  uzindi  14023  hashkf  14371  hashgval  14372  hashen  14386  hashdom  14418  symggen  19488  pgpfac1lem5  20099  fiufl  23924  fineqvacALT  35112  finixpnum  37612  poimirlem32  37659  ttac  43048
  Copyright terms: Public domain W3C validator