| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version | ||
| Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8950 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | nnon 7851 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 3 | ensym 8977 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
| 4 | isnumi 9906 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
| 6 | 5 | rexlimiva 3127 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 dom cdm 5641 Oncon0 6335 ωcom 7845 ≈ cen 8918 Fincfn 8921 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-om 7846 df-er 8674 df-en 8922 df-fin 8925 df-card 9899 |
| This theorem is referenced by: ficardom 9921 ficardid 9922 fidomtri 9953 numwdom 10019 fodomfi2 10020 dfac12k 10108 ficardun2 10162 pwsdompw 10163 ackbij2 10202 sdom2en01 10262 dfacfin7 10359 fin1a2lem9 10368 domtriomlem 10402 zornn0g 10465 canthnum 10609 pwfseqlem4 10622 uzindi 13954 hashkf 14304 hashgval 14305 hashen 14319 hashdom 14351 symggen 19407 pgpfac1lem5 20018 fiufl 23810 fineqvacALT 35095 finixpnum 37606 poimirlem32 37653 ttac 43032 |
| Copyright terms: Public domain | W3C validator |