![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version |
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8972 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | nnon 7861 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
3 | ensym 8999 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
4 | isnumi 9941 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
5 | 2, 3, 4 | syl2an 597 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
6 | 5 | rexlimiva 3148 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∃wrex 3071 class class class wbr 5149 dom cdm 5677 Oncon0 6365 ωcom 7855 ≈ cen 8936 Fincfn 8939 cardccrd 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-om 7856 df-er 8703 df-en 8940 df-fin 8943 df-card 9934 |
This theorem is referenced by: ficardom 9956 ficardid 9957 fidomtri 9988 numwdom 10054 fodomfi2 10055 dfac12k 10142 ficardunOLD 10196 ficardun2 10197 ficardun2OLD 10198 pwsdompw 10199 ackbij2 10238 sdom2en01 10297 dfacfin7 10394 fin1a2lem9 10403 domtriomlem 10437 zornn0g 10500 canthnum 10644 pwfseqlem4 10657 uzindi 13947 hashkf 14292 hashgval 14293 hashen 14307 hashdom 14339 symggen 19338 pgpfac1lem5 19949 fiufl 23420 fineqvacALT 34129 finixpnum 36521 poimirlem32 36568 ttac 41823 |
Copyright terms: Public domain | W3C validator |