| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version | ||
| Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8901 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | nnon 7805 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 3 | ensym 8928 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
| 4 | isnumi 9842 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
| 6 | 5 | rexlimiva 3122 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 dom cdm 5619 Oncon0 6307 ωcom 7799 ≈ cen 8869 Fincfn 8872 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-om 7800 df-er 8625 df-en 8873 df-fin 8876 df-card 9835 |
| This theorem is referenced by: ficardom 9857 ficardid 9858 fidomtri 9889 numwdom 9953 fodomfi2 9954 dfac12k 10042 ficardun2 10096 pwsdompw 10097 ackbij2 10136 sdom2en01 10196 dfacfin7 10293 fin1a2lem9 10302 domtriomlem 10336 zornn0g 10399 canthnum 10543 pwfseqlem4 10556 uzindi 13889 hashkf 14239 hashgval 14240 hashen 14254 hashdom 14286 symggen 19349 pgpfac1lem5 19960 fiufl 23801 fineqvacALT 35073 finixpnum 37585 poimirlem32 37632 ttac 43009 |
| Copyright terms: Public domain | W3C validator |