Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version |
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8802 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | nnon 7754 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
3 | ensym 8829 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
4 | isnumi 9762 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
6 | 5 | rexlimiva 3139 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 ∃wrex 3069 class class class wbr 5080 dom cdm 5600 Oncon0 6281 ωcom 7748 ≈ cen 8766 Fincfn 8769 cardccrd 9751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3357 df-v 3438 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-int 4886 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-om 7749 df-er 8534 df-en 8770 df-fin 8773 df-card 9755 |
This theorem is referenced by: ficardom 9777 ficardid 9778 fidomtri 9809 numwdom 9875 fodomfi2 9876 dfac12k 9963 ficardunOLD 10017 ficardun2 10018 ficardun2OLD 10019 pwsdompw 10020 ackbij2 10059 sdom2en01 10118 dfacfin7 10215 fin1a2lem9 10224 domtriomlem 10258 zornn0g 10321 canthnum 10465 pwfseqlem4 10478 uzindi 13762 hashkf 14106 hashgval 14107 hashen 14121 hashdom 14153 symggen 19137 pgpfac1lem5 19741 fiufl 23130 fineqvacALT 33163 finixpnum 35820 poimirlem32 35867 ttac 41067 |
Copyright terms: Public domain | W3C validator |