| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version | ||
| Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8908 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | nnon 7811 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 3 | ensym 8936 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
| 4 | isnumi 9850 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
| 6 | 5 | rexlimiva 3126 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 dom cdm 5621 Oncon0 6314 ωcom 7805 ≈ cen 8876 Fincfn 8879 cardccrd 9839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-om 7806 df-er 8631 df-en 8880 df-fin 8883 df-card 9843 |
| This theorem is referenced by: ficardom 9865 ficardid 9866 fidomtri 9897 numwdom 9961 fodomfi2 9962 dfac12k 10050 ficardun2 10104 pwsdompw 10105 ackbij2 10144 sdom2en01 10204 dfacfin7 10301 fin1a2lem9 10310 domtriomlem 10344 zornn0g 10407 canthnum 10551 pwfseqlem4 10564 uzindi 13896 hashkf 14246 hashgval 14247 hashen 14261 hashdom 14293 symggen 19390 pgpfac1lem5 20001 fiufl 23851 fineqvacALT 35212 finixpnum 37718 poimirlem32 37765 ttac 43193 |
| Copyright terms: Public domain | W3C validator |