| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version | ||
| Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8924 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | nnon 7828 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 3 | ensym 8951 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
| 4 | isnumi 9875 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
| 6 | 5 | rexlimiva 3126 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 dom cdm 5631 Oncon0 6320 ωcom 7822 ≈ cen 8892 Fincfn 8895 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-om 7823 df-er 8648 df-en 8896 df-fin 8899 df-card 9868 |
| This theorem is referenced by: ficardom 9890 ficardid 9891 fidomtri 9922 numwdom 9988 fodomfi2 9989 dfac12k 10077 ficardun2 10131 pwsdompw 10132 ackbij2 10171 sdom2en01 10231 dfacfin7 10328 fin1a2lem9 10337 domtriomlem 10371 zornn0g 10434 canthnum 10578 pwfseqlem4 10591 uzindi 13923 hashkf 14273 hashgval 14274 hashen 14288 hashdom 14320 symggen 19376 pgpfac1lem5 19987 fiufl 23779 fineqvacALT 35061 finixpnum 37572 poimirlem32 37619 ttac 42998 |
| Copyright terms: Public domain | W3C validator |