Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version |
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8764 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | nnon 7718 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
3 | ensym 8789 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
4 | isnumi 9704 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
5 | 2, 3, 4 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
6 | 5 | rexlimiva 3210 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 dom cdm 5589 Oncon0 6266 ωcom 7712 ≈ cen 8730 Fincfn 8733 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-om 7713 df-er 8498 df-en 8734 df-fin 8737 df-card 9697 |
This theorem is referenced by: ficardom 9719 ficardid 9720 fidomtri 9751 numwdom 9815 fodomfi2 9816 dfac12k 9903 ficardunOLD 9957 ficardun2 9958 ficardun2OLD 9959 pwsdompw 9960 ackbij2 9999 sdom2en01 10058 dfacfin7 10155 fin1a2lem9 10164 domtriomlem 10198 zornn0g 10261 canthnum 10405 pwfseqlem4 10418 uzindi 13702 hashkf 14046 hashgval 14047 hashen 14061 hashdom 14094 symggen 19078 pgpfac1lem5 19682 fiufl 23067 fineqvacALT 33067 finixpnum 35762 poimirlem32 35809 ttac 40858 |
Copyright terms: Public domain | W3C validator |