Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finnum | Structured version Visualization version GIF version |
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8696 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | nnon 7690 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
3 | ensym 8721 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
4 | isnumi 9610 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
5 | 2, 3, 4 | syl2an 599 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
6 | 5 | rexlimiva 3210 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
7 | 1, 6 | sylbi 220 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ∃wrex 3065 class class class wbr 5070 dom cdm 5579 Oncon0 6248 ωcom 7684 ≈ cen 8665 Fincfn 8668 cardccrd 9599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-ord 6251 df-on 6252 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-om 7685 df-er 8433 df-en 8669 df-fin 8672 df-card 9603 |
This theorem is referenced by: ficardom 9625 ficardid 9626 fidomtri 9657 numwdom 9721 fodomfi2 9722 dfac12k 9809 ficardunOLD 9863 ficardun2 9864 ficardun2OLD 9865 pwsdompw 9866 ackbij2 9905 sdom2en01 9964 dfacfin7 10061 fin1a2lem9 10070 domtriomlem 10104 zornn0g 10167 canthnum 10311 pwfseqlem4 10324 uzindi 13605 hashkf 13949 hashgval 13950 hashen 13964 hashdom 13997 symggen 18968 pgpfac1lem5 19572 fiufl 22950 fineqvacALT 32942 finixpnum 35668 poimirlem32 35715 ttac 40746 |
Copyright terms: Public domain | W3C validator |