MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord2 Structured version   Visualization version   GIF version

Theorem ltord2 11793
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord2.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
Assertion
Ref Expression
ltord2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑁 < 𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltord2
StepHypRef Expression
1 ltord.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
21negeqd 11503 . . 3 (𝑥 = 𝑦 → -𝐴 = -𝐵)
3 ltord.2 . . . 4 (𝑥 = 𝐶𝐴 = 𝑀)
43negeqd 11503 . . 3 (𝑥 = 𝐶 → -𝐴 = -𝑀)
5 ltord.3 . . . 4 (𝑥 = 𝐷𝐴 = 𝑁)
65negeqd 11503 . . 3 (𝑥 = 𝐷 → -𝐴 = -𝑁)
7 ltord.4 . . 3 𝑆 ⊆ ℝ
8 ltord.5 . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
98renegcld 11691 . . 3 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
10 ltord2.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
118ralrimiva 3145 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
121eleq1d 2825 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
1312rspccva 3620 . . . . . . 7 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝑦𝑆) → 𝐵 ∈ ℝ)
1411, 13sylan 580 . . . . . 6 ((𝜑𝑦𝑆) → 𝐵 ∈ ℝ)
1514adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐵 ∈ ℝ)
168adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 ∈ ℝ)
17 ltneg 11764 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1815, 16, 17syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1910, 18sylibd 239 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵))
202, 4, 6, 7, 9, 19ltord1 11790 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷 ↔ -𝑀 < -𝑁))
215eleq1d 2825 . . . . . 6 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3620 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2311, 22sylan 580 . . . 4 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2423adantrl 716 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
253eleq1d 2825 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
2625rspccva 3620 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2711, 26sylan 580 . . . 4 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2827adantrr 717 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
29 ltneg 11764 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 ↔ -𝑀 < -𝑁))
3024, 28, 29syl2anc 584 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑁 < 𝑀 ↔ -𝑀 < -𝑁))
3120, 30bitr4d 282 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑁 < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wss 3950   class class class wbr 5142  cr 11155   < clt 11296  -cneg 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator