![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltord2 | Structured version Visualization version GIF version |
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
ltord.4 | ⊢ 𝑆 ⊆ ℝ |
ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
ltord2.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) |
Ref | Expression |
---|---|
ltord2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 ↔ 𝑁 < 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltord.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | 1 | negeqd 11460 | . . 3 ⊢ (𝑥 = 𝑦 → -𝐴 = -𝐵) |
3 | ltord.2 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
4 | 3 | negeqd 11460 | . . 3 ⊢ (𝑥 = 𝐶 → -𝐴 = -𝑀) |
5 | ltord.3 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
6 | 5 | negeqd 11460 | . . 3 ⊢ (𝑥 = 𝐷 → -𝐴 = -𝑁) |
7 | ltord.4 | . . 3 ⊢ 𝑆 ⊆ ℝ | |
8 | ltord.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
9 | 8 | renegcld 11647 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → -𝐴 ∈ ℝ) |
10 | ltord2.6 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) | |
11 | 8 | ralrimiva 3144 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
12 | 1 | eleq1d 2816 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
13 | 12 | rspccva 3612 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝑦 ∈ 𝑆) → 𝐵 ∈ ℝ) |
14 | 11, 13 | sylan 578 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐵 ∈ ℝ) |
15 | 14 | adantrl 712 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ ℝ) |
16 | 8 | adantrr 713 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ ℝ) |
17 | ltneg 11720 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵)) | |
18 | 15, 16, 17 | syl2anc 582 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵)) |
19 | 10, 18 | sylibd 238 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵)) |
20 | 2, 4, 6, 7, 9, 19 | ltord1 11746 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 ↔ -𝑀 < -𝑁)) |
21 | 5 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
22 | 21 | rspccva 3612 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
23 | 11, 22 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
24 | 23 | adantrl 712 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
25 | 3 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
26 | 25 | rspccva 3612 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
27 | 11, 26 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
28 | 27 | adantrr 713 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
29 | ltneg 11720 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 ↔ -𝑀 < -𝑁)) | |
30 | 24, 28, 29 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑁 < 𝑀 ↔ -𝑀 < -𝑁)) |
31 | 20, 30 | bitr4d 281 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 ↔ 𝑁 < 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ⊆ wss 3949 class class class wbr 5149 ℝcr 11113 < clt 11254 -cneg 11451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |