MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqord2 Structured version   Visualization version   GIF version

Theorem eqord2 11328
Description: A strictly decreasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord2.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
Assertion
Ref Expression
eqord2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem eqord2
StepHypRef Expression
1 ltord.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
21negeqd 11037 . . 3 (𝑥 = 𝑦 → -𝐴 = -𝐵)
3 ltord.2 . . . 4 (𝑥 = 𝐶𝐴 = 𝑀)
43negeqd 11037 . . 3 (𝑥 = 𝐶 → -𝐴 = -𝑀)
5 ltord.3 . . . 4 (𝑥 = 𝐷𝐴 = 𝑁)
65negeqd 11037 . . 3 (𝑥 = 𝐷 → -𝐴 = -𝑁)
7 ltord.4 . . 3 𝑆 ⊆ ℝ
8 ltord.5 . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
98renegcld 11224 . . 3 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
10 ltord2.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
118ralrimiva 3095 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
121eleq1d 2815 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
1312rspccva 3526 . . . . . . 7 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝑦𝑆) → 𝐵 ∈ ℝ)
1411, 13sylan 583 . . . . . 6 ((𝜑𝑦𝑆) → 𝐵 ∈ ℝ)
1514adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐵 ∈ ℝ)
168adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 ∈ ℝ)
17 ltneg 11297 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1815, 16, 17syl2anc 587 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1910, 18sylibd 242 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵))
202, 4, 6, 7, 9, 19eqord1 11325 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷 ↔ -𝑀 = -𝑁))
213eleq1d 2815 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
2221rspccva 3526 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2311, 22sylan 583 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2423adantrr 717 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
2524recnd 10826 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℂ)
265eleq1d 2815 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2726rspccva 3526 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2811, 27sylan 583 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2928adantrl 716 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
3029recnd 10826 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℂ)
3125, 30neg11ad 11150 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (-𝑀 = -𝑁𝑀 = 𝑁))
3220, 31bitrd 282 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wss 3853   class class class wbr 5039  cr 10693   < clt 10832  -cneg 11028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030
This theorem is referenced by:  basellem4  25920
  Copyright terms: Public domain W3C validator