| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | letri3 11320 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: add20 11749 eqord1 11765 msq11 12143 supadd 12210 supmul 12214 suprzcl 12673 uzwo3 12959 flid 13825 flval3 13832 gcd0id 16538 gcdneg 16541 bezoutlem4 16561 gcdzeq 16571 lcmneg 16622 coprmgcdb 16668 qredeq 16676 pcidlem 16892 pcgcd1 16897 4sqlem17 16981 0ram 17040 ram0 17042 mndodconglem 19522 sylow1lem5 19583 zntoslem 21517 cnmpopc 24873 ovolsca 25468 ismbl2 25480 voliunlem2 25504 dyadmaxlem 25550 mbfi1fseqlem4 25671 itg2cnlem1 25714 ditgneg 25810 rolle 25946 dvivthlem1 25965 plyeq0lem 26167 dgreq 26201 coemulhi 26211 dgradd2 26226 dgrmul 26228 plydiveu 26258 vieta1lem2 26271 pilem3 26415 recxpf1lem 26690 zabsle1 27259 2sqmod 27399 ostth2 27600 brbtwn2 28884 axcontlem8 28950 nmophmi 32012 leoptri 32117 fzto1st1 33113 ballotlemfc0 34525 ballotlemfcc 34526 0nn0m1nnn0 35135 poimirlem23 37667 unitscyglem1 42208 rmspecfund 42932 ubelsupr 45044 lefldiveq 45321 wallispilem3 46096 fourierdlem6 46142 fourierdlem42 46178 fourierdlem50 46185 fourierdlem52 46187 fourierdlem54 46189 fourierdlem79 46214 fourierdlem102 46237 fourierdlem114 46249 2ffzoeq 47356 lighneallem2 47620 |
| Copyright terms: Public domain | W3C validator |