Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∧ wa 394 = wceq 1539
∈ wcel 2104 class class class wbr 5147
ℝcr 11111 ≤
cle 11253 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 |
This theorem is referenced by: add20
11730 eqord1
11746 msq11
12119 supadd
12186 supmul
12190 suprzcl
12646 uzwo3
12931 flid
13777 flval3
13784 gcd0id
16464 gcdneg
16467 bezoutlem4
16488 gcdzeq
16498 lcmneg
16544 coprmgcdb
16590 qredeq
16598 pcidlem
16809 pcgcd1
16814 4sqlem17
16898 0ram
16957 ram0
16959 mndodconglem
19450 sylow1lem5
19511 zntoslem
21331 cnmpopc
24669 ovolsca
25264 ismbl2
25276 voliunlem2
25300 dyadmaxlem
25346 mbfi1fseqlem4
25468 itg2cnlem1
25511 ditgneg
25606 rolle
25742 dvivthlem1
25760 plyeq0lem
25959 dgreq
25993 coemulhi
26003 dgradd2
26018 dgrmul
26020 plydiveu
26047 vieta1lem2
26060 pilem3
26201 recxpf1lem
26473 zabsle1
27035 2sqmod
27175 ostth2
27376 brbtwn2
28430 axcontlem8
28496 nmophmi
31551 leoptri
31656 fzto1st1
32531 ballotlemfc0
33789 ballotlemfcc
33790 0nn0m1nnn0
34400 poimirlem23
36814 rmspecfund
41949 ubelsupr
44006 lefldiveq
44300 wallispilem3
45081 fourierdlem6
45127 fourierdlem42
45163 fourierdlem50
45170 fourierdlem52
45172 fourierdlem54
45174 fourierdlem79
45199 fourierdlem102
45222 fourierdlem114
45234 2ffzoeq
46334 lighneallem2
46572 |