| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | letri3 11266 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: add20 11697 eqord1 11713 msq11 12091 supadd 12158 supmul 12162 suprzcl 12621 uzwo3 12909 flid 13777 flval3 13784 gcd0id 16496 gcdneg 16499 bezoutlem4 16519 gcdzeq 16529 lcmneg 16580 coprmgcdb 16626 qredeq 16634 pcidlem 16850 pcgcd1 16855 4sqlem17 16939 0ram 16998 ram0 17000 mndodconglem 19478 sylow1lem5 19539 zntoslem 21473 cnmpopc 24829 ovolsca 25423 ismbl2 25435 voliunlem2 25459 dyadmaxlem 25505 mbfi1fseqlem4 25626 itg2cnlem1 25669 ditgneg 25765 rolle 25901 dvivthlem1 25920 plyeq0lem 26122 dgreq 26156 coemulhi 26166 dgradd2 26181 dgrmul 26183 plydiveu 26213 vieta1lem2 26226 pilem3 26370 recxpf1lem 26645 zabsle1 27214 2sqmod 27354 ostth2 27555 brbtwn2 28839 axcontlem8 28905 nmophmi 31967 leoptri 32072 fzto1st1 33066 ballotlemfc0 34491 ballotlemfcc 34492 0nn0m1nnn0 35107 poimirlem23 37644 unitscyglem1 42190 rmspecfund 42904 ubelsupr 45021 lefldiveq 45297 wallispilem3 46072 fourierdlem6 46118 fourierdlem42 46154 fourierdlem50 46161 fourierdlem52 46163 fourierdlem54 46165 fourierdlem79 46190 fourierdlem102 46213 fourierdlem114 46225 2ffzoeq 47332 lighneallem2 47611 |
| Copyright terms: Public domain | W3C validator |