| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | letri3 11259 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: add20 11690 eqord1 11706 msq11 12084 supadd 12151 supmul 12155 suprzcl 12614 uzwo3 12902 flid 13770 flval3 13777 gcd0id 16489 gcdneg 16492 bezoutlem4 16512 gcdzeq 16522 lcmneg 16573 coprmgcdb 16619 qredeq 16627 pcidlem 16843 pcgcd1 16848 4sqlem17 16932 0ram 16991 ram0 16993 mndodconglem 19471 sylow1lem5 19532 zntoslem 21466 cnmpopc 24822 ovolsca 25416 ismbl2 25428 voliunlem2 25452 dyadmaxlem 25498 mbfi1fseqlem4 25619 itg2cnlem1 25662 ditgneg 25758 rolle 25894 dvivthlem1 25913 plyeq0lem 26115 dgreq 26149 coemulhi 26159 dgradd2 26174 dgrmul 26176 plydiveu 26206 vieta1lem2 26219 pilem3 26363 recxpf1lem 26638 zabsle1 27207 2sqmod 27347 ostth2 27548 brbtwn2 28832 axcontlem8 28898 nmophmi 31960 leoptri 32065 fzto1st1 33059 ballotlemfc0 34484 ballotlemfcc 34485 0nn0m1nnn0 35100 poimirlem23 37637 unitscyglem1 42183 rmspecfund 42897 ubelsupr 45014 lefldiveq 45290 wallispilem3 46065 fourierdlem6 46111 fourierdlem42 46147 fourierdlem50 46154 fourierdlem52 46156 fourierdlem54 46158 fourierdlem79 46183 fourierdlem102 46206 fourierdlem114 46218 2ffzoeq 47328 lighneallem2 47607 |
| Copyright terms: Public domain | W3C validator |