Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version |
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | letri3 10991 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: add20 11417 eqord1 11433 msq11 11806 supadd 11873 supmul 11877 suprzcl 12330 uzwo3 12612 flid 13456 flval3 13463 gcd0id 16154 gcdneg 16157 bezoutlem4 16178 gcdzeq 16190 lcmneg 16236 coprmgcdb 16282 qredeq 16290 pcidlem 16501 pcgcd1 16506 4sqlem17 16590 0ram 16649 ram0 16651 mndodconglem 19064 sylow1lem5 19122 zntoslem 20676 cnmpopc 23997 ovolsca 24584 ismbl2 24596 voliunlem2 24620 dyadmaxlem 24666 mbfi1fseqlem4 24788 itg2cnlem1 24831 ditgneg 24926 rolle 25059 dvivthlem1 25077 plyeq0lem 25276 dgreq 25310 coemulhi 25320 dgradd2 25334 dgrmul 25336 plydiveu 25363 vieta1lem2 25376 pilem3 25517 zabsle1 26349 2sqmod 26489 ostth2 26690 brbtwn2 27176 axcontlem8 27242 nmophmi 30294 leoptri 30399 fzto1st1 31271 ballotlemfc0 32359 ballotlemfcc 32360 0nn0m1nnn0 32971 poimirlem23 35727 rmspecfund 40647 ubelsupr 42452 lefldiveq 42721 wallispilem3 43498 fourierdlem6 43544 fourierdlem42 43580 fourierdlem50 43587 fourierdlem52 43589 fourierdlem54 43591 fourierdlem79 43616 fourierdlem102 43639 fourierdlem114 43651 2ffzoeq 44708 lighneallem2 44946 |
Copyright terms: Public domain | W3C validator |