Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version |
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | letri3 11060 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: add20 11487 eqord1 11503 msq11 11876 supadd 11943 supmul 11947 suprzcl 12400 uzwo3 12683 flid 13528 flval3 13535 gcd0id 16226 gcdneg 16229 bezoutlem4 16250 gcdzeq 16262 lcmneg 16308 coprmgcdb 16354 qredeq 16362 pcidlem 16573 pcgcd1 16578 4sqlem17 16662 0ram 16721 ram0 16723 mndodconglem 19149 sylow1lem5 19207 zntoslem 20764 cnmpopc 24091 ovolsca 24679 ismbl2 24691 voliunlem2 24715 dyadmaxlem 24761 mbfi1fseqlem4 24883 itg2cnlem1 24926 ditgneg 25021 rolle 25154 dvivthlem1 25172 plyeq0lem 25371 dgreq 25405 coemulhi 25415 dgradd2 25429 dgrmul 25431 plydiveu 25458 vieta1lem2 25471 pilem3 25612 zabsle1 26444 2sqmod 26584 ostth2 26785 brbtwn2 27273 axcontlem8 27339 nmophmi 30393 leoptri 30498 fzto1st1 31369 ballotlemfc0 32459 ballotlemfcc 32460 0nn0m1nnn0 33071 poimirlem23 35800 rmspecfund 40731 ubelsupr 42563 lefldiveq 42831 wallispilem3 43608 fourierdlem6 43654 fourierdlem42 43690 fourierdlem50 43697 fourierdlem52 43699 fourierdlem54 43701 fourierdlem79 43726 fourierdlem102 43749 fourierdlem114 43761 2ffzoeq 44820 lighneallem2 45058 |
Copyright terms: Public domain | W3C validator |