![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version |
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | letri3 11375 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: add20 11802 eqord1 11818 msq11 12196 supadd 12263 supmul 12267 suprzcl 12723 uzwo3 13008 flid 13859 flval3 13866 gcd0id 16565 gcdneg 16568 bezoutlem4 16589 gcdzeq 16599 lcmneg 16650 coprmgcdb 16696 qredeq 16704 pcidlem 16919 pcgcd1 16924 4sqlem17 17008 0ram 17067 ram0 17069 mndodconglem 19583 sylow1lem5 19644 zntoslem 21598 cnmpopc 24974 ovolsca 25569 ismbl2 25581 voliunlem2 25605 dyadmaxlem 25651 mbfi1fseqlem4 25773 itg2cnlem1 25816 ditgneg 25912 rolle 26048 dvivthlem1 26067 plyeq0lem 26269 dgreq 26303 coemulhi 26313 dgradd2 26328 dgrmul 26330 plydiveu 26358 vieta1lem2 26371 pilem3 26515 recxpf1lem 26789 zabsle1 27358 2sqmod 27498 ostth2 27699 brbtwn2 28938 axcontlem8 29004 nmophmi 32063 leoptri 32168 fzto1st1 33095 ballotlemfc0 34457 ballotlemfcc 34458 0nn0m1nnn0 35080 poimirlem23 37603 unitscyglem1 42152 rmspecfund 42865 ubelsupr 44920 lefldiveq 45207 wallispilem3 45988 fourierdlem6 46034 fourierdlem42 46070 fourierdlem50 46077 fourierdlem52 46079 fourierdlem54 46081 fourierdlem79 46106 fourierdlem102 46129 fourierdlem114 46141 2ffzoeq 47242 lighneallem2 47480 |
Copyright terms: Public domain | W3C validator |