Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∧ wa 397 = wceq 1542
∈ wcel 2107 class class class wbr 5149
ℝcr 11109 ≤
cle 11249 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: add20
11726 eqord1
11742 msq11
12115 supadd
12182 supmul
12186 suprzcl
12642 uzwo3
12927 flid
13773 flval3
13780 gcd0id
16460 gcdneg
16463 bezoutlem4
16484 gcdzeq
16494 lcmneg
16540 coprmgcdb
16586 qredeq
16594 pcidlem
16805 pcgcd1
16810 4sqlem17
16894 0ram
16953 ram0
16955 mndodconglem
19409 sylow1lem5
19470 zntoslem
21112 cnmpopc
24444 ovolsca
25032 ismbl2
25044 voliunlem2
25068 dyadmaxlem
25114 mbfi1fseqlem4
25236 itg2cnlem1
25279 ditgneg
25374 rolle
25507 dvivthlem1
25525 plyeq0lem
25724 dgreq
25758 coemulhi
25768 dgradd2
25782 dgrmul
25784 plydiveu
25811 vieta1lem2
25824 pilem3
25965 recxpf1lem
26237 zabsle1
26799 2sqmod
26939 ostth2
27140 brbtwn2
28163 axcontlem8
28229 nmophmi
31284 leoptri
31389 fzto1st1
32261 ballotlemfc0
33491 ballotlemfcc
33492 0nn0m1nnn0
34102 poimirlem23
36511 rmspecfund
41647 ubelsupr
43704 lefldiveq
44002 wallispilem3
44783 fourierdlem6
44829 fourierdlem42
44865 fourierdlem50
44872 fourierdlem52
44874 fourierdlem54
44876 fourierdlem79
44901 fourierdlem102
44924 fourierdlem114
44936 2ffzoeq
46036 lighneallem2
46274 |