| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | letri3 11198 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: add20 11629 eqord1 11645 msq11 12023 supadd 12090 supmul 12094 suprzcl 12553 uzwo3 12841 flid 13712 flval3 13719 gcd0id 16430 gcdneg 16433 bezoutlem4 16453 gcdzeq 16463 lcmneg 16514 coprmgcdb 16560 qredeq 16568 pcidlem 16784 pcgcd1 16789 4sqlem17 16873 0ram 16932 ram0 16934 mndodconglem 19454 sylow1lem5 19515 zntoslem 21494 cnmpopc 24850 ovolsca 25444 ismbl2 25456 voliunlem2 25480 dyadmaxlem 25526 mbfi1fseqlem4 25647 itg2cnlem1 25690 ditgneg 25786 rolle 25922 dvivthlem1 25941 plyeq0lem 26143 dgreq 26177 coemulhi 26187 dgradd2 26202 dgrmul 26204 plydiveu 26234 vieta1lem2 26247 pilem3 26391 recxpf1lem 26666 zabsle1 27235 2sqmod 27375 ostth2 27576 brbtwn2 28884 axcontlem8 28950 nmophmi 32009 leoptri 32114 fzto1st1 33069 ballotlemfc0 34504 ballotlemfcc 34505 0nn0m1nnn0 35155 poimirlem23 37689 unitscyglem1 42234 rmspecfund 42948 ubelsupr 45063 lefldiveq 45339 wallispilem3 46111 fourierdlem6 46157 fourierdlem42 46193 fourierdlem50 46200 fourierdlem52 46202 fourierdlem54 46204 fourierdlem79 46229 fourierdlem102 46252 fourierdlem114 46264 2ffzoeq 47364 lighneallem2 47643 |
| Copyright terms: Public domain | W3C validator |