| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | letri3 11207 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: add20 11638 eqord1 11654 msq11 12032 supadd 12099 supmul 12103 suprzcl 12561 uzwo3 12845 flid 13716 flval3 13723 gcd0id 16434 gcdneg 16437 bezoutlem4 16457 gcdzeq 16467 lcmneg 16518 coprmgcdb 16564 qredeq 16572 pcidlem 16788 pcgcd1 16793 4sqlem17 16877 0ram 16936 ram0 16938 mndodconglem 19457 sylow1lem5 19518 zntoslem 21497 cnmpopc 24852 ovolsca 25446 ismbl2 25458 voliunlem2 25482 dyadmaxlem 25528 mbfi1fseqlem4 25649 itg2cnlem1 25692 ditgneg 25788 rolle 25924 dvivthlem1 25943 plyeq0lem 26145 dgreq 26179 coemulhi 26189 dgradd2 26204 dgrmul 26206 plydiveu 26236 vieta1lem2 26249 pilem3 26393 recxpf1lem 26668 zabsle1 27237 2sqmod 27377 ostth2 27578 brbtwn2 28887 axcontlem8 28953 nmophmi 32015 leoptri 32120 fzto1st1 33080 ballotlemfc0 34529 ballotlemfcc 34530 0nn0m1nnn0 35180 poimirlem23 37706 unitscyglem1 42311 rmspecfund 43029 ubelsupr 45144 lefldiveq 45420 wallispilem3 46192 fourierdlem6 46238 fourierdlem42 46274 fourierdlem50 46281 fourierdlem52 46283 fourierdlem54 46285 fourierdlem79 46310 fourierdlem102 46333 fourierdlem114 46345 2ffzoeq 47454 lighneallem2 47733 |
| Copyright terms: Public domain | W3C validator |