![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version |
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | letri3 11306 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ℝcr 11115 ≤ cle 11256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 |
This theorem is referenced by: add20 11733 eqord1 11749 msq11 12122 supadd 12189 supmul 12193 suprzcl 12649 uzwo3 12934 flid 13780 flval3 13787 gcd0id 16467 gcdneg 16470 bezoutlem4 16491 gcdzeq 16501 lcmneg 16547 coprmgcdb 16593 qredeq 16601 pcidlem 16812 pcgcd1 16817 4sqlem17 16901 0ram 16960 ram0 16962 mndodconglem 19454 sylow1lem5 19515 zntoslem 21335 cnmpopc 24682 ovolsca 25277 ismbl2 25289 voliunlem2 25313 dyadmaxlem 25359 mbfi1fseqlem4 25481 itg2cnlem1 25524 ditgneg 25619 rolle 25755 dvivthlem1 25774 plyeq0lem 25973 dgreq 26007 coemulhi 26017 dgradd2 26032 dgrmul 26034 plydiveu 26061 vieta1lem2 26074 pilem3 26216 recxpf1lem 26488 zabsle1 27050 2sqmod 27190 ostth2 27391 brbtwn2 28445 axcontlem8 28511 nmophmi 31566 leoptri 31671 fzto1st1 32546 ballotlemfc0 33804 ballotlemfcc 33805 0nn0m1nnn0 34415 poimirlem23 36827 rmspecfund 41962 ubelsupr 44019 lefldiveq 44313 wallispilem3 45094 fourierdlem6 45140 fourierdlem42 45176 fourierdlem50 45183 fourierdlem52 45185 fourierdlem54 45187 fourierdlem79 45212 fourierdlem102 45235 fourierdlem114 45247 2ffzoeq 46347 lighneallem2 46585 |
Copyright terms: Public domain | W3C validator |