| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | letri3 11219 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: add20 11650 eqord1 11666 msq11 12044 supadd 12111 supmul 12115 suprzcl 12574 uzwo3 12862 flid 13730 flval3 13737 gcd0id 16448 gcdneg 16451 bezoutlem4 16471 gcdzeq 16481 lcmneg 16532 coprmgcdb 16578 qredeq 16586 pcidlem 16802 pcgcd1 16807 4sqlem17 16891 0ram 16950 ram0 16952 mndodconglem 19438 sylow1lem5 19499 zntoslem 21481 cnmpopc 24838 ovolsca 25432 ismbl2 25444 voliunlem2 25468 dyadmaxlem 25514 mbfi1fseqlem4 25635 itg2cnlem1 25678 ditgneg 25774 rolle 25910 dvivthlem1 25929 plyeq0lem 26131 dgreq 26165 coemulhi 26175 dgradd2 26190 dgrmul 26192 plydiveu 26222 vieta1lem2 26235 pilem3 26379 recxpf1lem 26654 zabsle1 27223 2sqmod 27363 ostth2 27564 brbtwn2 28868 axcontlem8 28934 nmophmi 31993 leoptri 32098 fzto1st1 33057 ballotlemfc0 34463 ballotlemfcc 34464 0nn0m1nnn0 35088 poimirlem23 37625 unitscyglem1 42171 rmspecfund 42885 ubelsupr 45001 lefldiveq 45277 wallispilem3 46052 fourierdlem6 46098 fourierdlem42 46134 fourierdlem50 46141 fourierdlem52 46143 fourierdlem54 46145 fourierdlem79 46170 fourierdlem102 46193 fourierdlem114 46205 2ffzoeq 47315 lighneallem2 47594 |
| Copyright terms: Public domain | W3C validator |