![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letri3d | Structured version Visualization version GIF version |
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
letri3d | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | letri3 11343 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 |
This theorem is referenced by: add20 11772 eqord1 11788 msq11 12166 supadd 12233 supmul 12237 suprzcl 12695 uzwo3 12982 flid 13844 flval3 13851 gcd0id 16552 gcdneg 16555 bezoutlem4 16575 gcdzeq 16585 lcmneg 16636 coprmgcdb 16682 qredeq 16690 pcidlem 16905 pcgcd1 16910 4sqlem17 16994 0ram 17053 ram0 17055 mndodconglem 19573 sylow1lem5 19634 zntoslem 21592 cnmpopc 24968 ovolsca 25563 ismbl2 25575 voliunlem2 25599 dyadmaxlem 25645 mbfi1fseqlem4 25767 itg2cnlem1 25810 ditgneg 25906 rolle 26042 dvivthlem1 26061 plyeq0lem 26263 dgreq 26297 coemulhi 26307 dgradd2 26322 dgrmul 26324 plydiveu 26354 vieta1lem2 26367 pilem3 26511 recxpf1lem 26785 zabsle1 27354 2sqmod 27494 ostth2 27695 brbtwn2 28934 axcontlem8 29000 nmophmi 32059 leoptri 32164 fzto1st1 33104 ballotlemfc0 34473 ballotlemfcc 34474 0nn0m1nnn0 35096 poimirlem23 37629 unitscyglem1 42176 rmspecfund 42896 ubelsupr 44957 lefldiveq 45242 wallispilem3 46022 fourierdlem6 46068 fourierdlem42 46104 fourierdlem50 46111 fourierdlem52 46113 fourierdlem54 46115 fourierdlem79 46140 fourierdlem102 46163 fourierdlem114 46175 2ffzoeq 47276 lighneallem2 47530 |
Copyright terms: Public domain | W3C validator |