Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∧ wa 397 = wceq 1542
∈ wcel 2107 class class class wbr 5110
ℝcr 11057 ≤
cle 11197 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-pre-lttri 11132 ax-pre-lttrn 11133 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 |
This theorem is referenced by: add20
11674 eqord1
11690 msq11
12063 supadd
12130 supmul
12134 suprzcl
12590 uzwo3
12875 flid
13720 flval3
13727 gcd0id
16406 gcdneg
16409 bezoutlem4
16430 gcdzeq
16440 lcmneg
16486 coprmgcdb
16532 qredeq
16540 pcidlem
16751 pcgcd1
16756 4sqlem17
16840 0ram
16899 ram0
16901 mndodconglem
19330 sylow1lem5
19391 zntoslem
20979 cnmpopc
24307 ovolsca
24895 ismbl2
24907 voliunlem2
24931 dyadmaxlem
24977 mbfi1fseqlem4
25099 itg2cnlem1
25142 ditgneg
25237 rolle
25370 dvivthlem1
25388 plyeq0lem
25587 dgreq
25621 coemulhi
25631 dgradd2
25645 dgrmul
25647 plydiveu
25674 vieta1lem2
25687 pilem3
25828 zabsle1
26660 2sqmod
26800 ostth2
27001 brbtwn2
27896 axcontlem8
27962 nmophmi
31015 leoptri
31120 fzto1st1
31993 ballotlemfc0
33132 ballotlemfcc
33133 0nn0m1nnn0
33743 poimirlem23
36130 rmspecfund
41261 ubelsupr
43299 lefldiveq
43600 wallispilem3
44382 fourierdlem6
44428 fourierdlem42
44464 fourierdlem50
44471 fourierdlem52
44473 fourierdlem54
44475 fourierdlem79
44500 fourierdlem102
44523 fourierdlem114
44535 2ffzoeq
45634 lighneallem2
45872 |