| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35224. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| erdsze.f | ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
| erdszelem.k | ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| Ref | Expression |
|---|---|
| erdszelem3 | ⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (1...𝑥) = (1...𝐴)) | |
| 2 | 1 | pweqd 4592 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝒫 (1...𝑥) = 𝒫 (1...𝐴)) |
| 3 | eleq1 2822 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)) | |
| 4 | 3 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦) ↔ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦))) |
| 5 | 2, 4 | rabeqbidv 3434 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) |
| 6 | 5 | imaeq2d 6047 | . . 3 ⊢ (𝑥 = 𝐴 → (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
| 7 | 6 | supeq1d 9458 | . 2 ⊢ (𝑥 = 𝐴 → sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
| 8 | erdszelem.k | . 2 ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 9 | ltso 11315 | . . 3 ⊢ < Or ℝ | |
| 10 | 9 | supex 9476 | . 2 ⊢ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ V |
| 11 | 7, 8, 10 | fvmpt 6986 | 1 ⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 𝒫 cpw 4575 ↦ cmpt 5201 ↾ cres 5656 “ cima 5657 –1-1→wf1 6528 ‘cfv 6531 Isom wiso 6532 (class class class)co 7405 supcsup 9452 ℝcr 11128 1c1 11130 < clt 11269 ℕcn 12240 ...cfz 13524 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: erdszelem5 35217 erdszelem8 35220 |
| Copyright terms: Public domain | W3C validator |