MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oien Structured version   Visualization version   GIF version

Theorem oien 9154
Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oien ((𝐴𝑉𝑅 We 𝐴) → dom 𝐹𝐴)

Proof of Theorem oien
StepHypRef Expression
1 oicl.1 . . 3 𝐹 = OrdIso(𝑅, 𝐴)
21oiexg 9151 . 2 (𝐴𝑉𝐹 ∈ V)
31oiiso 9153 . . 3 ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
4 isof1o 7132 . . 3 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
53, 4syl 17 . 2 ((𝐴𝑉𝑅 We 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
6 f1oen3g 8644 . 2 ((𝐹 ∈ V ∧ 𝐹:dom 𝐹1-1-onto𝐴) → dom 𝐹𝐴)
72, 5, 6syl2an2r 685 1 ((𝐴𝑉𝑅 We 𝐴) → dom 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408   class class class wbr 5053   E cep 5459   We wwe 5508  dom cdm 5551  1-1-ontowf1o 6379   Isom wiso 6381  cen 8623  OrdIsocoi 9125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-wrecs 8047  df-recs 8108  df-en 8627  df-oi 9126
This theorem is referenced by:  hartogslem1  9158  wofib  9161  cantnfcl  9282  cantnff  9289  cantnf0  9290  cantnfp1lem2  9294  cantnflem1  9304  cantnf  9308  cnfcom2lem  9316  finnisoeu  9727  dfac12lem2  9758  pwfseqlem5  10277  fz1isolem  14027
  Copyright terms: Public domain W3C validator