Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oien | Structured version Visualization version GIF version |
Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
Ref | Expression |
---|---|
oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
Ref | Expression |
---|---|
oien | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oicl.1 | . . 3 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
2 | 1 | oiexg 9151 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
3 | 1 | oiiso 9153 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
4 | isof1o 7132 | . . 3 ⊢ (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
6 | f1oen3g 8644 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:dom 𝐹–1-1-onto→𝐴) → dom 𝐹 ≈ 𝐴) | |
7 | 2, 5, 6 | syl2an2r 685 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 E cep 5459 We wwe 5508 dom cdm 5551 –1-1-onto→wf1o 6379 Isom wiso 6381 ≈ cen 8623 OrdIsocoi 9125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-wrecs 8047 df-recs 8108 df-en 8627 df-oi 9126 |
This theorem is referenced by: hartogslem1 9158 wofib 9161 cantnfcl 9282 cantnff 9289 cantnf0 9290 cantnfp1lem2 9294 cantnflem1 9304 cantnf 9308 cnfcom2lem 9316 finnisoeu 9727 dfac12lem2 9758 pwfseqlem5 10277 fz1isolem 14027 |
Copyright terms: Public domain | W3C validator |