| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oien | Structured version Visualization version GIF version | ||
| Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
| Ref | Expression |
|---|---|
| oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
| Ref | Expression |
|---|---|
| oien | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | . . 3 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
| 2 | 1 | oiexg 9488 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
| 3 | 1 | oiiso 9490 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 4 | isof1o 7298 | . . 3 ⊢ (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
| 6 | f1oen3g 8938 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:dom 𝐹–1-1-onto→𝐴) → dom 𝐹 ≈ 𝐴) | |
| 7 | 2, 5, 6 | syl2an2r 685 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 E cep 5537 We wwe 5590 dom cdm 5638 –1-1-onto→wf1o 6510 Isom wiso 6512 ≈ cen 8915 OrdIsocoi 9462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-en 8919 df-oi 9463 |
| This theorem is referenced by: hartogslem1 9495 wofib 9498 cantnfcl 9620 cantnff 9627 cantnf0 9628 cantnfp1lem2 9632 cantnflem1 9642 cantnf 9646 cnfcom2lem 9654 finnisoeu 10066 dfac12lem2 10098 pwfseqlem5 10616 fz1isolem 14426 |
| Copyright terms: Public domain | W3C validator |