MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oien Structured version   Visualization version   GIF version

Theorem oien 9576
Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oien ((𝐴𝑉𝑅 We 𝐴) → dom 𝐹𝐴)

Proof of Theorem oien
StepHypRef Expression
1 oicl.1 . . 3 𝐹 = OrdIso(𝑅, 𝐴)
21oiexg 9573 . 2 (𝐴𝑉𝐹 ∈ V)
31oiiso 9575 . . 3 ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
4 isof1o 7343 . . 3 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
53, 4syl 17 . 2 ((𝐴𝑉𝑅 We 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
6 f1oen3g 9006 . 2 ((𝐹 ∈ V ∧ 𝐹:dom 𝐹1-1-onto𝐴) → dom 𝐹𝐴)
72, 5, 6syl2an2r 685 1 ((𝐴𝑉𝑅 We 𝐴) → dom 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148   E cep 5588   We wwe 5640  dom cdm 5689  1-1-ontowf1o 6562   Isom wiso 6564  cen 8981  OrdIsocoi 9547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-en 8985  df-oi 9548
This theorem is referenced by:  hartogslem1  9580  wofib  9583  cantnfcl  9705  cantnff  9712  cantnf0  9713  cantnfp1lem2  9717  cantnflem1  9727  cantnf  9731  cnfcom2lem  9739  finnisoeu  10151  dfac12lem2  10183  pwfseqlem5  10701  fz1isolem  14497
  Copyright terms: Public domain W3C validator