MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oien Structured version   Visualization version   GIF version

Theorem oien 9552
Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oien ((𝐴𝑉𝑅 We 𝐴) → dom 𝐹𝐴)

Proof of Theorem oien
StepHypRef Expression
1 oicl.1 . . 3 𝐹 = OrdIso(𝑅, 𝐴)
21oiexg 9549 . 2 (𝐴𝑉𝐹 ∈ V)
31oiiso 9551 . . 3 ((𝐴𝑉𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
4 isof1o 7316 . . 3 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
53, 4syl 17 . 2 ((𝐴𝑉𝑅 We 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
6 f1oen3g 8981 . 2 ((𝐹 ∈ V ∧ 𝐹:dom 𝐹1-1-onto𝐴) → dom 𝐹𝐴)
72, 5, 6syl2an2r 685 1 ((𝐴𝑉𝑅 We 𝐴) → dom 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   class class class wbr 5119   E cep 5552   We wwe 5605  dom cdm 5654  1-1-ontowf1o 6530   Isom wiso 6532  cen 8956  OrdIsocoi 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-en 8960  df-oi 9524
This theorem is referenced by:  hartogslem1  9556  wofib  9559  cantnfcl  9681  cantnff  9688  cantnf0  9689  cantnfp1lem2  9693  cantnflem1  9703  cantnf  9707  cnfcom2lem  9715  finnisoeu  10127  dfac12lem2  10159  pwfseqlem5  10677  fz1isolem  14479
  Copyright terms: Public domain W3C validator