MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   GIF version

Theorem fin23lem21 10360
Description: Lemma for fin23 10410. 𝑋 is not empty. We only need here that 𝑑 has at least one set in its range besides βˆ…; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
fin23lem17.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem21 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ β‰  βˆ…)
Distinct variable groups:   𝑔,𝑖,𝑑,𝑒,π‘₯,π‘Ž   𝐹,π‘Ž,𝑑   𝑉,π‘Ž   π‘₯,π‘Ž   π‘ˆ,π‘Ž,𝑖,𝑒   𝑔,π‘Ž
Allowed substitution hints:   π‘ˆ(π‘₯,𝑑,𝑔)   𝐹(π‘₯,𝑒,𝑔,𝑖)   𝑉(π‘₯,𝑒,𝑑,𝑔,𝑖)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3 π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
2 fin23lem17.f . . 3 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
31, 2fin23lem17 10359 . 2 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)
41fnseqom 8472 . . . . 5 π‘ˆ Fn Ο‰
5 fvelrnb 6953 . . . . 5 (π‘ˆ Fn Ο‰ β†’ (∩ ran π‘ˆ ∈ ran π‘ˆ ↔ βˆƒπ‘Ž ∈ Ο‰ (π‘ˆβ€˜π‘Ž) = ∩ ran π‘ˆ))
64, 5ax-mp 5 . . . 4 (∩ ran π‘ˆ ∈ ran π‘ˆ ↔ βˆƒπ‘Ž ∈ Ο‰ (π‘ˆβ€˜π‘Ž) = ∩ ran π‘ˆ)
7 id 22 . . . . . . 7 (π‘Ž ∈ Ο‰ β†’ π‘Ž ∈ Ο‰)
8 vex 3467 . . . . . . . . . 10 𝑑 ∈ V
9 f1f1orn 6844 . . . . . . . . . 10 (𝑑:ω–1-1→𝑉 β†’ 𝑑:ω–1-1-ontoβ†’ran 𝑑)
10 f1oen3g 8983 . . . . . . . . . 10 ((𝑑 ∈ V ∧ 𝑑:ω–1-1-ontoβ†’ran 𝑑) β†’ Ο‰ β‰ˆ ran 𝑑)
118, 9, 10sylancr 585 . . . . . . . . 9 (𝑑:ω–1-1→𝑉 β†’ Ο‰ β‰ˆ ran 𝑑)
12 ominf 9279 . . . . . . . . 9 Β¬ Ο‰ ∈ Fin
13 ssdif0 4359 . . . . . . . . . . 11 (ran 𝑑 βŠ† {βˆ…} ↔ (ran 𝑑 βˆ– {βˆ…}) = βˆ…)
14 snfi 9065 . . . . . . . . . . . . 13 {βˆ…} ∈ Fin
15 ssfi 9194 . . . . . . . . . . . . 13 (({βˆ…} ∈ Fin ∧ ran 𝑑 βŠ† {βˆ…}) β†’ ran 𝑑 ∈ Fin)
1614, 15mpan 688 . . . . . . . . . . . 12 (ran 𝑑 βŠ† {βˆ…} β†’ ran 𝑑 ∈ Fin)
17 enfi 9211 . . . . . . . . . . . 12 (Ο‰ β‰ˆ ran 𝑑 β†’ (Ο‰ ∈ Fin ↔ ran 𝑑 ∈ Fin))
1816, 17imbitrrid 245 . . . . . . . . . . 11 (Ο‰ β‰ˆ ran 𝑑 β†’ (ran 𝑑 βŠ† {βˆ…} β†’ Ο‰ ∈ Fin))
1913, 18biimtrrid 242 . . . . . . . . . 10 (Ο‰ β‰ˆ ran 𝑑 β†’ ((ran 𝑑 βˆ– {βˆ…}) = βˆ… β†’ Ο‰ ∈ Fin))
2019necon3bd 2944 . . . . . . . . 9 (Ο‰ β‰ˆ ran 𝑑 β†’ (Β¬ Ο‰ ∈ Fin β†’ (ran 𝑑 βˆ– {βˆ…}) β‰  βˆ…))
2111, 12, 20mpisyl 21 . . . . . . . 8 (𝑑:ω–1-1→𝑉 β†’ (ran 𝑑 βˆ– {βˆ…}) β‰  βˆ…)
22 n0 4342 . . . . . . . . 9 ((ran 𝑑 βˆ– {βˆ…}) β‰  βˆ… ↔ βˆƒπ‘Ž π‘Ž ∈ (ran 𝑑 βˆ– {βˆ…}))
23 eldifsn 4786 . . . . . . . . . . 11 (π‘Ž ∈ (ran 𝑑 βˆ– {βˆ…}) ↔ (π‘Ž ∈ ran 𝑑 ∧ π‘Ž β‰  βˆ…))
24 elssuni 4935 . . . . . . . . . . . 12 (π‘Ž ∈ ran 𝑑 β†’ π‘Ž βŠ† βˆͺ ran 𝑑)
25 ssn0 4396 . . . . . . . . . . . 12 ((π‘Ž βŠ† βˆͺ ran 𝑑 ∧ π‘Ž β‰  βˆ…) β†’ βˆͺ ran 𝑑 β‰  βˆ…)
2624, 25sylan 578 . . . . . . . . . . 11 ((π‘Ž ∈ ran 𝑑 ∧ π‘Ž β‰  βˆ…) β†’ βˆͺ ran 𝑑 β‰  βˆ…)
2723, 26sylbi 216 . . . . . . . . . 10 (π‘Ž ∈ (ran 𝑑 βˆ– {βˆ…}) β†’ βˆͺ ran 𝑑 β‰  βˆ…)
2827exlimiv 1925 . . . . . . . . 9 (βˆƒπ‘Ž π‘Ž ∈ (ran 𝑑 βˆ– {βˆ…}) β†’ βˆͺ ran 𝑑 β‰  βˆ…)
2922, 28sylbi 216 . . . . . . . 8 ((ran 𝑑 βˆ– {βˆ…}) β‰  βˆ… β†’ βˆͺ ran 𝑑 β‰  βˆ…)
3021, 29syl 17 . . . . . . 7 (𝑑:ω–1-1→𝑉 β†’ βˆͺ ran 𝑑 β‰  βˆ…)
311fin23lem14 10354 . . . . . . 7 ((π‘Ž ∈ Ο‰ ∧ βˆͺ ran 𝑑 β‰  βˆ…) β†’ (π‘ˆβ€˜π‘Ž) β‰  βˆ…)
327, 30, 31syl2anr 595 . . . . . 6 ((𝑑:ω–1-1→𝑉 ∧ π‘Ž ∈ Ο‰) β†’ (π‘ˆβ€˜π‘Ž) β‰  βˆ…)
33 neeq1 2993 . . . . . 6 ((π‘ˆβ€˜π‘Ž) = ∩ ran π‘ˆ β†’ ((π‘ˆβ€˜π‘Ž) β‰  βˆ… ↔ ∩ ran π‘ˆ β‰  βˆ…))
3432, 33syl5ibcom 244 . . . . 5 ((𝑑:ω–1-1→𝑉 ∧ π‘Ž ∈ Ο‰) β†’ ((π‘ˆβ€˜π‘Ž) = ∩ ran π‘ˆ β†’ ∩ ran π‘ˆ β‰  βˆ…))
3534rexlimdva 3145 . . . 4 (𝑑:ω–1-1→𝑉 β†’ (βˆƒπ‘Ž ∈ Ο‰ (π‘ˆβ€˜π‘Ž) = ∩ ran π‘ˆ β†’ ∩ ran π‘ˆ β‰  βˆ…))
366, 35biimtrid 241 . . 3 (𝑑:ω–1-1→𝑉 β†’ (∩ ran π‘ˆ ∈ ran π‘ˆ β†’ ∩ ran π‘ˆ β‰  βˆ…))
3736adantl 480 . 2 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ (∩ ran π‘ˆ ∈ ran π‘ˆ β†’ ∩ ran π‘ˆ β‰  βˆ…))
383, 37mpd 15 1 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2702   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   βˆ– cdif 3937   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4318  ifcif 4524  π’« cpw 4598  {csn 4624  βˆͺ cuni 4903  βˆ© cint 4944   class class class wbr 5143  ran crn 5673  suc csuc 6366   Fn wfn 6537  β€“1-1β†’wf1 6539  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7415   ∈ cmpo 7417  Ο‰com 7867  seqΟ‰cseqom 8464   ↑m cmap 8841   β‰ˆ cen 8957  Fincfn 8960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-seqom 8465  df-1o 8483  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964
This theorem is referenced by:  fin23lem31  10364
  Copyright terms: Public domain W3C validator