MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   GIF version

Theorem fin23lem21 9936
Description: Lemma for fin23 9986. 𝑋 is not empty. We only need here that 𝑡 has at least one set in its range besides ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem21 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑥,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑥,𝑎   𝑈,𝑎,𝑖,𝑢   𝑔,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑡,𝑔)   𝐹(𝑥,𝑢,𝑔,𝑖)   𝑉(𝑥,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
31, 2fin23lem17 9935 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
41fnseqom 8180 . . . . 5 𝑈 Fn ω
5 fvelrnb 6762 . . . . 5 (𝑈 Fn ω → ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈))
64, 5ax-mp 5 . . . 4 ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈)
7 id 22 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ ω)
8 vex 3405 . . . . . . . . . 10 𝑡 ∈ V
9 f1f1orn 6661 . . . . . . . . . 10 (𝑡:ω–1-1𝑉𝑡:ω–1-1-onto→ran 𝑡)
10 f1oen3g 8633 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝑡:ω–1-1-onto→ran 𝑡) → ω ≈ ran 𝑡)
118, 9, 10sylancr 590 . . . . . . . . 9 (𝑡:ω–1-1𝑉 → ω ≈ ran 𝑡)
12 ominf 8879 . . . . . . . . 9 ¬ ω ∈ Fin
13 ssdif0 4268 . . . . . . . . . . 11 (ran 𝑡 ⊆ {∅} ↔ (ran 𝑡 ∖ {∅}) = ∅)
14 snfi 8710 . . . . . . . . . . . . 13 {∅} ∈ Fin
15 ssfi 8840 . . . . . . . . . . . . 13 (({∅} ∈ Fin ∧ ran 𝑡 ⊆ {∅}) → ran 𝑡 ∈ Fin)
1614, 15mpan 690 . . . . . . . . . . . 12 (ran 𝑡 ⊆ {∅} → ran 𝑡 ∈ Fin)
17 enfi 8854 . . . . . . . . . . . 12 (ω ≈ ran 𝑡 → (ω ∈ Fin ↔ ran 𝑡 ∈ Fin))
1816, 17syl5ibr 249 . . . . . . . . . . 11 (ω ≈ ran 𝑡 → (ran 𝑡 ⊆ {∅} → ω ∈ Fin))
1913, 18syl5bir 246 . . . . . . . . . 10 (ω ≈ ran 𝑡 → ((ran 𝑡 ∖ {∅}) = ∅ → ω ∈ Fin))
2019necon3bd 2949 . . . . . . . . 9 (ω ≈ ran 𝑡 → (¬ ω ∈ Fin → (ran 𝑡 ∖ {∅}) ≠ ∅))
2111, 12, 20mpisyl 21 . . . . . . . 8 (𝑡:ω–1-1𝑉 → (ran 𝑡 ∖ {∅}) ≠ ∅)
22 n0 4251 . . . . . . . . 9 ((ran 𝑡 ∖ {∅}) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}))
23 eldifsn 4690 . . . . . . . . . . 11 (𝑎 ∈ (ran 𝑡 ∖ {∅}) ↔ (𝑎 ∈ ran 𝑡𝑎 ≠ ∅))
24 elssuni 4841 . . . . . . . . . . . 12 (𝑎 ∈ ran 𝑡𝑎 ran 𝑡)
25 ssn0 4305 . . . . . . . . . . . 12 ((𝑎 ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2624, 25sylan 583 . . . . . . . . . . 11 ((𝑎 ∈ ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2723, 26sylbi 220 . . . . . . . . . 10 (𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2827exlimiv 1938 . . . . . . . . 9 (∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2922, 28sylbi 220 . . . . . . . 8 ((ran 𝑡 ∖ {∅}) ≠ ∅ → ran 𝑡 ≠ ∅)
3021, 29syl 17 . . . . . . 7 (𝑡:ω–1-1𝑉 ran 𝑡 ≠ ∅)
311fin23lem14 9930 . . . . . . 7 ((𝑎 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝑎) ≠ ∅)
327, 30, 31syl2anr 600 . . . . . 6 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → (𝑈𝑎) ≠ ∅)
33 neeq1 2997 . . . . . 6 ((𝑈𝑎) = ran 𝑈 → ((𝑈𝑎) ≠ ∅ ↔ ran 𝑈 ≠ ∅))
3432, 33syl5ibcom 248 . . . . 5 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → ((𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
3534rexlimdva 3196 . . . 4 (𝑡:ω–1-1𝑉 → (∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
366, 35syl5bi 245 . . 3 (𝑡:ω–1-1𝑉 → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
3736adantl 485 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
383, 37mpd 15 1 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2712  wne 2935  wral 3054  wrex 3055  Vcvv 3401  cdif 3854  cin 3856  wss 3857  c0 4227  ifcif 4429  𝒫 cpw 4503  {csn 4531   cuni 4809   cint 4849   class class class wbr 5043  ran crn 5541  suc csuc 6204   Fn wfn 6364  1-1wf1 6366  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  cmpo 7204  ωcom 7633  seqωcseqom 8172  m cmap 8497  cen 8612  Fincfn 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-seqom 8173  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619
This theorem is referenced by:  fin23lem31  9940
  Copyright terms: Public domain W3C validator