MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   GIF version

Theorem fin23lem21 10026
Description: Lemma for fin23 10076. 𝑋 is not empty. We only need here that 𝑡 has at least one set in its range besides ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem21 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑥,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑥,𝑎   𝑈,𝑎,𝑖,𝑢   𝑔,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑡,𝑔)   𝐹(𝑥,𝑢,𝑔,𝑖)   𝑉(𝑥,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
31, 2fin23lem17 10025 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
41fnseqom 8256 . . . . 5 𝑈 Fn ω
5 fvelrnb 6812 . . . . 5 (𝑈 Fn ω → ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈))
64, 5ax-mp 5 . . . 4 ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈)
7 id 22 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ ω)
8 vex 3426 . . . . . . . . . 10 𝑡 ∈ V
9 f1f1orn 6711 . . . . . . . . . 10 (𝑡:ω–1-1𝑉𝑡:ω–1-1-onto→ran 𝑡)
10 f1oen3g 8709 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝑡:ω–1-1-onto→ran 𝑡) → ω ≈ ran 𝑡)
118, 9, 10sylancr 586 . . . . . . . . 9 (𝑡:ω–1-1𝑉 → ω ≈ ran 𝑡)
12 ominf 8964 . . . . . . . . 9 ¬ ω ∈ Fin
13 ssdif0 4294 . . . . . . . . . . 11 (ran 𝑡 ⊆ {∅} ↔ (ran 𝑡 ∖ {∅}) = ∅)
14 snfi 8788 . . . . . . . . . . . . 13 {∅} ∈ Fin
15 ssfi 8918 . . . . . . . . . . . . 13 (({∅} ∈ Fin ∧ ran 𝑡 ⊆ {∅}) → ran 𝑡 ∈ Fin)
1614, 15mpan 686 . . . . . . . . . . . 12 (ran 𝑡 ⊆ {∅} → ran 𝑡 ∈ Fin)
17 enfi 8933 . . . . . . . . . . . 12 (ω ≈ ran 𝑡 → (ω ∈ Fin ↔ ran 𝑡 ∈ Fin))
1816, 17syl5ibr 245 . . . . . . . . . . 11 (ω ≈ ran 𝑡 → (ran 𝑡 ⊆ {∅} → ω ∈ Fin))
1913, 18syl5bir 242 . . . . . . . . . 10 (ω ≈ ran 𝑡 → ((ran 𝑡 ∖ {∅}) = ∅ → ω ∈ Fin))
2019necon3bd 2956 . . . . . . . . 9 (ω ≈ ran 𝑡 → (¬ ω ∈ Fin → (ran 𝑡 ∖ {∅}) ≠ ∅))
2111, 12, 20mpisyl 21 . . . . . . . 8 (𝑡:ω–1-1𝑉 → (ran 𝑡 ∖ {∅}) ≠ ∅)
22 n0 4277 . . . . . . . . 9 ((ran 𝑡 ∖ {∅}) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}))
23 eldifsn 4717 . . . . . . . . . . 11 (𝑎 ∈ (ran 𝑡 ∖ {∅}) ↔ (𝑎 ∈ ran 𝑡𝑎 ≠ ∅))
24 elssuni 4868 . . . . . . . . . . . 12 (𝑎 ∈ ran 𝑡𝑎 ran 𝑡)
25 ssn0 4331 . . . . . . . . . . . 12 ((𝑎 ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2624, 25sylan 579 . . . . . . . . . . 11 ((𝑎 ∈ ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2723, 26sylbi 216 . . . . . . . . . 10 (𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2827exlimiv 1934 . . . . . . . . 9 (∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2922, 28sylbi 216 . . . . . . . 8 ((ran 𝑡 ∖ {∅}) ≠ ∅ → ran 𝑡 ≠ ∅)
3021, 29syl 17 . . . . . . 7 (𝑡:ω–1-1𝑉 ran 𝑡 ≠ ∅)
311fin23lem14 10020 . . . . . . 7 ((𝑎 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝑎) ≠ ∅)
327, 30, 31syl2anr 596 . . . . . 6 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → (𝑈𝑎) ≠ ∅)
33 neeq1 3005 . . . . . 6 ((𝑈𝑎) = ran 𝑈 → ((𝑈𝑎) ≠ ∅ ↔ ran 𝑈 ≠ ∅))
3432, 33syl5ibcom 244 . . . . 5 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → ((𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
3534rexlimdva 3212 . . . 4 (𝑡:ω–1-1𝑉 → (∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
366, 35syl5bi 241 . . 3 (𝑡:ω–1-1𝑉 → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
3736adantl 481 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
383, 37mpd 15 1 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   cuni 4836   cint 4876   class class class wbr 5070  ran crn 5581  suc csuc 6253   Fn wfn 6413  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  seqωcseqom 8248  m cmap 8573  cen 8688  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695
This theorem is referenced by:  fin23lem31  10030
  Copyright terms: Public domain W3C validator