MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   GIF version

Theorem fin23lem21 10376
Description: Lemma for fin23 10426. 𝑋 is not empty. We only need here that 𝑡 has at least one set in its range besides ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem21 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑥,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑥,𝑎   𝑈,𝑎,𝑖,𝑢   𝑔,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑡,𝑔)   𝐹(𝑥,𝑢,𝑔,𝑖)   𝑉(𝑥,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
31, 2fin23lem17 10375 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
41fnseqom 8493 . . . . 5 𝑈 Fn ω
5 fvelrnb 6968 . . . . 5 (𝑈 Fn ω → ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈))
64, 5ax-mp 5 . . . 4 ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈)
7 id 22 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ ω)
8 vex 3481 . . . . . . . . . 10 𝑡 ∈ V
9 f1f1orn 6859 . . . . . . . . . 10 (𝑡:ω–1-1𝑉𝑡:ω–1-1-onto→ran 𝑡)
10 f1oen3g 9005 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝑡:ω–1-1-onto→ran 𝑡) → ω ≈ ran 𝑡)
118, 9, 10sylancr 587 . . . . . . . . 9 (𝑡:ω–1-1𝑉 → ω ≈ ran 𝑡)
12 ominf 9291 . . . . . . . . 9 ¬ ω ∈ Fin
13 ssdif0 4371 . . . . . . . . . . 11 (ran 𝑡 ⊆ {∅} ↔ (ran 𝑡 ∖ {∅}) = ∅)
14 snfi 9081 . . . . . . . . . . . . 13 {∅} ∈ Fin
15 ssfi 9211 . . . . . . . . . . . . 13 (({∅} ∈ Fin ∧ ran 𝑡 ⊆ {∅}) → ran 𝑡 ∈ Fin)
1614, 15mpan 690 . . . . . . . . . . . 12 (ran 𝑡 ⊆ {∅} → ran 𝑡 ∈ Fin)
17 enfi 9224 . . . . . . . . . . . 12 (ω ≈ ran 𝑡 → (ω ∈ Fin ↔ ran 𝑡 ∈ Fin))
1816, 17imbitrrid 246 . . . . . . . . . . 11 (ω ≈ ran 𝑡 → (ran 𝑡 ⊆ {∅} → ω ∈ Fin))
1913, 18biimtrrid 243 . . . . . . . . . 10 (ω ≈ ran 𝑡 → ((ran 𝑡 ∖ {∅}) = ∅ → ω ∈ Fin))
2019necon3bd 2951 . . . . . . . . 9 (ω ≈ ran 𝑡 → (¬ ω ∈ Fin → (ran 𝑡 ∖ {∅}) ≠ ∅))
2111, 12, 20mpisyl 21 . . . . . . . 8 (𝑡:ω–1-1𝑉 → (ran 𝑡 ∖ {∅}) ≠ ∅)
22 n0 4358 . . . . . . . . 9 ((ran 𝑡 ∖ {∅}) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}))
23 eldifsn 4790 . . . . . . . . . . 11 (𝑎 ∈ (ran 𝑡 ∖ {∅}) ↔ (𝑎 ∈ ran 𝑡𝑎 ≠ ∅))
24 elssuni 4941 . . . . . . . . . . . 12 (𝑎 ∈ ran 𝑡𝑎 ran 𝑡)
25 ssn0 4409 . . . . . . . . . . . 12 ((𝑎 ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2624, 25sylan 580 . . . . . . . . . . 11 ((𝑎 ∈ ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2723, 26sylbi 217 . . . . . . . . . 10 (𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2827exlimiv 1927 . . . . . . . . 9 (∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2922, 28sylbi 217 . . . . . . . 8 ((ran 𝑡 ∖ {∅}) ≠ ∅ → ran 𝑡 ≠ ∅)
3021, 29syl 17 . . . . . . 7 (𝑡:ω–1-1𝑉 ran 𝑡 ≠ ∅)
311fin23lem14 10370 . . . . . . 7 ((𝑎 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝑎) ≠ ∅)
327, 30, 31syl2anr 597 . . . . . 6 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → (𝑈𝑎) ≠ ∅)
33 neeq1 3000 . . . . . 6 ((𝑈𝑎) = ran 𝑈 → ((𝑈𝑎) ≠ ∅ ↔ ran 𝑈 ≠ ∅))
3432, 33syl5ibcom 245 . . . . 5 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → ((𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
3534rexlimdva 3152 . . . 4 (𝑡:ω–1-1𝑉 → (∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
366, 35biimtrid 242 . . 3 (𝑡:ω–1-1𝑉 → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
3736adantl 481 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
383, 37mpd 15 1 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cdif 3959  cin 3961  wss 3962  c0 4338  ifcif 4530  𝒫 cpw 4604  {csn 4630   cuni 4911   cint 4950   class class class wbr 5147  ran crn 5689  suc csuc 6387   Fn wfn 6557  1-1wf1 6559  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cmpo 7432  ωcom 7886  seqωcseqom 8485  m cmap 8864  cen 8980  Fincfn 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-seqom 8486  df-1o 8504  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987
This theorem is referenced by:  fin23lem31  10380
  Copyright terms: Public domain W3C validator