MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   GIF version

Theorem fin23lem21 10275
Description: Lemma for fin23 10325. 𝑋 is not empty. We only need here that 𝑡 has at least one set in its range besides ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem21 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑥,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑥,𝑎   𝑈,𝑎,𝑖,𝑢   𝑔,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑡,𝑔)   𝐹(𝑥,𝑢,𝑔,𝑖)   𝑉(𝑥,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
31, 2fin23lem17 10274 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
41fnseqom 8401 . . . . 5 𝑈 Fn ω
5 fvelrnb 6903 . . . . 5 (𝑈 Fn ω → ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈))
64, 5ax-mp 5 . . . 4 ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈)
7 id 22 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ ω)
8 vex 3449 . . . . . . . . . 10 𝑡 ∈ V
9 f1f1orn 6795 . . . . . . . . . 10 (𝑡:ω–1-1𝑉𝑡:ω–1-1-onto→ran 𝑡)
10 f1oen3g 8906 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝑡:ω–1-1-onto→ran 𝑡) → ω ≈ ran 𝑡)
118, 9, 10sylancr 587 . . . . . . . . 9 (𝑡:ω–1-1𝑉 → ω ≈ ran 𝑡)
12 ominf 9202 . . . . . . . . 9 ¬ ω ∈ Fin
13 ssdif0 4323 . . . . . . . . . . 11 (ran 𝑡 ⊆ {∅} ↔ (ran 𝑡 ∖ {∅}) = ∅)
14 snfi 8988 . . . . . . . . . . . . 13 {∅} ∈ Fin
15 ssfi 9117 . . . . . . . . . . . . 13 (({∅} ∈ Fin ∧ ran 𝑡 ⊆ {∅}) → ran 𝑡 ∈ Fin)
1614, 15mpan 688 . . . . . . . . . . . 12 (ran 𝑡 ⊆ {∅} → ran 𝑡 ∈ Fin)
17 enfi 9134 . . . . . . . . . . . 12 (ω ≈ ran 𝑡 → (ω ∈ Fin ↔ ran 𝑡 ∈ Fin))
1816, 17syl5ibr 245 . . . . . . . . . . 11 (ω ≈ ran 𝑡 → (ran 𝑡 ⊆ {∅} → ω ∈ Fin))
1913, 18biimtrrid 242 . . . . . . . . . 10 (ω ≈ ran 𝑡 → ((ran 𝑡 ∖ {∅}) = ∅ → ω ∈ Fin))
2019necon3bd 2957 . . . . . . . . 9 (ω ≈ ran 𝑡 → (¬ ω ∈ Fin → (ran 𝑡 ∖ {∅}) ≠ ∅))
2111, 12, 20mpisyl 21 . . . . . . . 8 (𝑡:ω–1-1𝑉 → (ran 𝑡 ∖ {∅}) ≠ ∅)
22 n0 4306 . . . . . . . . 9 ((ran 𝑡 ∖ {∅}) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}))
23 eldifsn 4747 . . . . . . . . . . 11 (𝑎 ∈ (ran 𝑡 ∖ {∅}) ↔ (𝑎 ∈ ran 𝑡𝑎 ≠ ∅))
24 elssuni 4898 . . . . . . . . . . . 12 (𝑎 ∈ ran 𝑡𝑎 ran 𝑡)
25 ssn0 4360 . . . . . . . . . . . 12 ((𝑎 ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2624, 25sylan 580 . . . . . . . . . . 11 ((𝑎 ∈ ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2723, 26sylbi 216 . . . . . . . . . 10 (𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2827exlimiv 1933 . . . . . . . . 9 (∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2922, 28sylbi 216 . . . . . . . 8 ((ran 𝑡 ∖ {∅}) ≠ ∅ → ran 𝑡 ≠ ∅)
3021, 29syl 17 . . . . . . 7 (𝑡:ω–1-1𝑉 ran 𝑡 ≠ ∅)
311fin23lem14 10269 . . . . . . 7 ((𝑎 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝑎) ≠ ∅)
327, 30, 31syl2anr 597 . . . . . 6 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → (𝑈𝑎) ≠ ∅)
33 neeq1 3006 . . . . . 6 ((𝑈𝑎) = ran 𝑈 → ((𝑈𝑎) ≠ ∅ ↔ ran 𝑈 ≠ ∅))
3432, 33syl5ibcom 244 . . . . 5 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → ((𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
3534rexlimdva 3152 . . . 4 (𝑡:ω–1-1𝑉 → (∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
366, 35biimtrid 241 . . 3 (𝑡:ω–1-1𝑉 → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
3736adantl 482 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
383, 37mpd 15 1 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560  {csn 4586   cuni 4865   cint 4907   class class class wbr 5105  ran crn 5634  suc csuc 6319   Fn wfn 6491  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359  ωcom 7802  seqωcseqom 8393  m cmap 8765  cen 8880  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887
This theorem is referenced by:  fin23lem31  10279
  Copyright terms: Public domain W3C validator