Proof of Theorem fin23lem21
Step | Hyp | Ref
| Expression |
1 | | fin23lem.a |
. . 3
⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
2 | | fin23lem17.f |
. . 3
⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran
𝑎 ∈ ran 𝑎)} |
3 | 1, 2 | fin23lem17 10094 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∩ ran
𝑈 ∈ ran 𝑈) |
4 | 1 | fnseqom 8286 |
. . . . 5
⊢ 𝑈 Fn ω |
5 | | fvelrnb 6830 |
. . . . 5
⊢ (𝑈 Fn ω → (∩ ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈‘𝑎) = ∩ ran 𝑈)) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ (∩ ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈‘𝑎) = ∩ ran 𝑈) |
7 | | id 22 |
. . . . . . 7
⊢ (𝑎 ∈ ω → 𝑎 ∈
ω) |
8 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑡 ∈ V |
9 | | f1f1orn 6727 |
. . . . . . . . . 10
⊢ (𝑡:ω–1-1→𝑉 → 𝑡:ω–1-1-onto→ran
𝑡) |
10 | | f1oen3g 8754 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ V ∧ 𝑡:ω–1-1-onto→ran
𝑡) → ω ≈
ran 𝑡) |
11 | 8, 9, 10 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑡:ω–1-1→𝑉 → ω ≈ ran 𝑡) |
12 | | ominf 9035 |
. . . . . . . . 9
⊢ ¬
ω ∈ Fin |
13 | | ssdif0 4297 |
. . . . . . . . . . 11
⊢ (ran
𝑡 ⊆ {∅} ↔
(ran 𝑡 ∖ {∅}) =
∅) |
14 | | snfi 8834 |
. . . . . . . . . . . . 13
⊢ {∅}
∈ Fin |
15 | | ssfi 8956 |
. . . . . . . . . . . . 13
⊢
(({∅} ∈ Fin ∧ ran 𝑡 ⊆ {∅}) → ran 𝑡 ∈ Fin) |
16 | 14, 15 | mpan 687 |
. . . . . . . . . . . 12
⊢ (ran
𝑡 ⊆ {∅} →
ran 𝑡 ∈
Fin) |
17 | | enfi 8973 |
. . . . . . . . . . . 12
⊢ (ω
≈ ran 𝑡 →
(ω ∈ Fin ↔ ran 𝑡 ∈ Fin)) |
18 | 16, 17 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ (ω
≈ ran 𝑡 → (ran
𝑡 ⊆ {∅} →
ω ∈ Fin)) |
19 | 13, 18 | syl5bir 242 |
. . . . . . . . . 10
⊢ (ω
≈ ran 𝑡 → ((ran
𝑡 ∖ {∅}) =
∅ → ω ∈ Fin)) |
20 | 19 | necon3bd 2957 |
. . . . . . . . 9
⊢ (ω
≈ ran 𝑡 → (¬
ω ∈ Fin → (ran 𝑡 ∖ {∅}) ≠
∅)) |
21 | 11, 12, 20 | mpisyl 21 |
. . . . . . . 8
⊢ (𝑡:ω–1-1→𝑉 → (ran 𝑡 ∖ {∅}) ≠
∅) |
22 | | n0 4280 |
. . . . . . . . 9
⊢ ((ran
𝑡 ∖ {∅}) ≠
∅ ↔ ∃𝑎
𝑎 ∈ (ran 𝑡 ∖
{∅})) |
23 | | eldifsn 4720 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (ran 𝑡 ∖ {∅}) ↔ (𝑎 ∈ ran 𝑡 ∧ 𝑎 ≠ ∅)) |
24 | | elssuni 4871 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ran 𝑡 → 𝑎 ⊆ ∪ ran
𝑡) |
25 | | ssn0 4334 |
. . . . . . . . . . . 12
⊢ ((𝑎 ⊆ ∪ ran 𝑡 ∧ 𝑎 ≠ ∅) → ∪ ran 𝑡 ≠ ∅) |
26 | 24, 25 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ran 𝑡 ∧ 𝑎 ≠ ∅) → ∪ ran 𝑡 ≠ ∅) |
27 | 23, 26 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (ran 𝑡 ∖ {∅}) → ∪ ran 𝑡 ≠ ∅) |
28 | 27 | exlimiv 1933 |
. . . . . . . . 9
⊢
(∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}) → ∪ ran 𝑡 ≠ ∅) |
29 | 22, 28 | sylbi 216 |
. . . . . . . 8
⊢ ((ran
𝑡 ∖ {∅}) ≠
∅ → ∪ ran 𝑡 ≠ ∅) |
30 | 21, 29 | syl 17 |
. . . . . . 7
⊢ (𝑡:ω–1-1→𝑉 → ∪ ran
𝑡 ≠
∅) |
31 | 1 | fin23lem14 10089 |
. . . . . . 7
⊢ ((𝑎 ∈ ω ∧ ∪ ran 𝑡 ≠ ∅) → (𝑈‘𝑎) ≠ ∅) |
32 | 7, 30, 31 | syl2anr 597 |
. . . . . 6
⊢ ((𝑡:ω–1-1→𝑉 ∧ 𝑎 ∈ ω) → (𝑈‘𝑎) ≠ ∅) |
33 | | neeq1 3006 |
. . . . . 6
⊢ ((𝑈‘𝑎) = ∩ ran 𝑈 → ((𝑈‘𝑎) ≠ ∅ ↔ ∩ ran 𝑈 ≠ ∅)) |
34 | 32, 33 | syl5ibcom 244 |
. . . . 5
⊢ ((𝑡:ω–1-1→𝑉 ∧ 𝑎 ∈ ω) → ((𝑈‘𝑎) = ∩ ran 𝑈 → ∩ ran 𝑈 ≠ ∅)) |
35 | 34 | rexlimdva 3213 |
. . . 4
⊢ (𝑡:ω–1-1→𝑉 → (∃𝑎 ∈ ω (𝑈‘𝑎) = ∩ ran 𝑈 → ∩ ran 𝑈 ≠ ∅)) |
36 | 6, 35 | syl5bi 241 |
. . 3
⊢ (𝑡:ω–1-1→𝑉 → (∩ ran
𝑈 ∈ ran 𝑈 → ∩ ran 𝑈 ≠ ∅)) |
37 | 36 | adantl 482 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → (∩ ran
𝑈 ∈ ran 𝑈 → ∩ ran 𝑈 ≠ ∅)) |
38 | 3, 37 | mpd 15 |
1
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∩ ran
𝑈 ≠
∅) |