MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oenfi Structured version   Visualization version   GIF version

Theorem f1oenfi 9093
Description: If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 8896). (Contributed by BTernaryTau, 8-Sep-2024.)
Assertion
Ref Expression
f1oenfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oenfi
StepHypRef Expression
1 f1ofn 6765 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fnfi 9092 . . . 4 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
31, 2sylan 580 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐴 ∈ Fin) → 𝐹 ∈ Fin)
43ancoms 458 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
5 f1oen3g 8892 . 2 ((𝐹 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
64, 5sylancom 588 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5092   Fn wfn 6477  1-1-ontowf1o 6481  cen 8869  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876
This theorem is referenced by:  enreffi  9097  ensymfib  9098  entrfil  9099  f1imaenfi  9109  f1finf1o  9162  sticksstones18  42147  sticksstones19  42148
  Copyright terms: Public domain W3C validator