![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fallfacval3 | Structured version Visualization version GIF version |
Description: A product representation of falling factorial when 𝐴 is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018.) |
Ref | Expression |
---|---|
fallfacval3 | ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz3nn0 13678 | . . . 4 ⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0cnd 12615 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ) |
3 | elfznn0 13677 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℕ0) | |
4 | fallfacval 16057 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑗 ∈ (0...(𝑁 − 1))(𝐴 − 𝑗)) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑗 ∈ (0...(𝑁 − 1))(𝐴 − 𝑗)) |
6 | elfzel2 13582 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ) | |
7 | elfzel1 13583 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 0 ∈ ℤ) | |
8 | elfzelz 13584 | . . . 4 ⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ) | |
9 | peano2zm 12686 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → (𝑁 − 1) ∈ ℤ) |
11 | elfzelz 13584 | . . . . 5 ⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ) | |
12 | 11 | zcnd 12748 | . . . 4 ⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℂ) |
13 | subcl 11535 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐴 − 𝑗) ∈ ℂ) | |
14 | 2, 12, 13 | syl2an 595 | . . 3 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 − 𝑗) ∈ ℂ) |
15 | oveq2 7456 | . . 3 ⊢ (𝑗 = (𝐴 − 𝑘) → (𝐴 − 𝑗) = (𝐴 − (𝐴 − 𝑘))) | |
16 | 6, 7, 10, 14, 15 | fprodrev 16025 | . 2 ⊢ (𝑁 ∈ (0...𝐴) → ∏𝑗 ∈ (0...(𝑁 − 1))(𝐴 − 𝑗) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))(𝐴 − (𝐴 − 𝑘))) |
17 | 2 | subid1d 11636 | . . . 4 ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 0) = 𝐴) |
18 | 17 | oveq2d 7464 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...(𝐴 − 0)) = ((𝐴 − (𝑁 − 1))...𝐴)) |
19 | 2 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))) → 𝐴 ∈ ℂ) |
20 | elfzelz 13584 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0)) → 𝑘 ∈ ℤ) | |
21 | 20 | zcnd 12748 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0)) → 𝑘 ∈ ℂ) |
22 | 21 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))) → 𝑘 ∈ ℂ) |
23 | 19, 22 | nncand 11652 | . . 3 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))) → (𝐴 − (𝐴 − 𝑘)) = 𝑘) |
24 | 18, 23 | prodeq12dv 15974 | . 2 ⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))(𝐴 − (𝐴 − 𝑘)) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
25 | 5, 16, 24 | 3eqtrd 2784 | 1 ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 − cmin 11520 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ∏cprod 15951 FallFac cfallfac 16052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-fallfac 16055 |
This theorem is referenced by: fallfacval4 16091 |
Copyright terms: Public domain | W3C validator |