![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fallfacval3 | Structured version Visualization version GIF version |
Description: A product representation of falling factorial when 𝐴 is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018.) |
Ref | Expression |
---|---|
fallfacval3 | ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz3nn0 13535 | . . . 4 ⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0cnd 12475 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ) |
3 | elfznn0 13534 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℕ0) | |
4 | fallfacval 15892 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑗 ∈ (0...(𝑁 − 1))(𝐴 − 𝑗)) | |
5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑗 ∈ (0...(𝑁 − 1))(𝐴 − 𝑗)) |
6 | elfzel2 13439 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ) | |
7 | elfzel1 13440 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → 0 ∈ ℤ) | |
8 | elfzelz 13441 | . . . 4 ⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ) | |
9 | peano2zm 12546 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → (𝑁 − 1) ∈ ℤ) |
11 | elfzelz 13441 | . . . . 5 ⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ) | |
12 | 11 | zcnd 12608 | . . . 4 ⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℂ) |
13 | subcl 11400 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐴 − 𝑗) ∈ ℂ) | |
14 | 2, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 − 𝑗) ∈ ℂ) |
15 | oveq2 7365 | . . 3 ⊢ (𝑗 = (𝐴 − 𝑘) → (𝐴 − 𝑗) = (𝐴 − (𝐴 − 𝑘))) | |
16 | 6, 7, 10, 14, 15 | fprodrev 15860 | . 2 ⊢ (𝑁 ∈ (0...𝐴) → ∏𝑗 ∈ (0...(𝑁 − 1))(𝐴 − 𝑗) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))(𝐴 − (𝐴 − 𝑘))) |
17 | 2 | subid1d 11501 | . . . 4 ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 0) = 𝐴) |
18 | 17 | oveq2d 7373 | . . 3 ⊢ (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...(𝐴 − 0)) = ((𝐴 − (𝑁 − 1))...𝐴)) |
19 | 2 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))) → 𝐴 ∈ ℂ) |
20 | elfzelz 13441 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0)) → 𝑘 ∈ ℤ) | |
21 | 20 | zcnd 12608 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0)) → 𝑘 ∈ ℂ) |
22 | 21 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))) → 𝑘 ∈ ℂ) |
23 | 19, 22 | nncand 11517 | . . 3 ⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))) → (𝐴 − (𝐴 − 𝑘)) = 𝑘) |
24 | 18, 23 | prodeq12dv 15809 | . 2 ⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...(𝐴 − 0))(𝐴 − (𝐴 − 𝑘)) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
25 | 5, 16, 24 | 3eqtrd 2780 | 1 ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 − cmin 11385 ℕ0cn0 12413 ℤcz 12499 ...cfz 13424 ∏cprod 15788 FallFac cfallfac 15887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-prod 15789 df-fallfac 15890 |
This theorem is referenced by: fallfacval4 15926 |
Copyright terms: Public domain | W3C validator |