Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > risefacval2 | Structured version Visualization version GIF version |
Description: One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
Ref | Expression |
---|---|
risefacval2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risefacval 15822 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 + 𝑛)) | |
2 | 1zzd 12461 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ) | |
3 | 0zd 12441 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
4 | nn0z 12453 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
5 | peano2zm 12473 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
7 | 6 | adantl 483 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℤ) |
8 | simpl 484 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
9 | elfznn0 13459 | . . . . 5 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0) | |
10 | 9 | nn0cnd 12405 | . . . 4 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℂ) |
11 | addcl 11063 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝐴 + 𝑛) ∈ ℂ) | |
12 | 8, 10, 11 | syl2an 597 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 + 𝑛) ∈ ℂ) |
13 | oveq2 7354 | . . 3 ⊢ (𝑛 = (𝑘 − 1) → (𝐴 + 𝑛) = (𝐴 + (𝑘 − 1))) | |
14 | 2, 3, 7, 12, 13 | fprodshft 15790 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 + 𝑛) = ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 + (𝑘 − 1))) |
15 | 0p1e1 12205 | . . . . 5 ⊢ (0 + 1) = 1 | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0 + 1) = 1) |
17 | nn0cn 12353 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
18 | 1cnd 11080 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
19 | 17, 18 | npcand 11446 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
20 | 19 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁) |
21 | 16, 20 | oveq12d 7364 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
22 | 21 | prodeq1d 15735 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) |
23 | 1, 14, 22 | 3eqtrd 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 (class class class)co 7346 ℂcc 10979 0cc0 10981 1c1 10982 + caddc 10984 − cmin 11315 ℕ0cn0 12343 ℤcz 12429 ...cfz 13349 ∏cprod 15719 RiseFac crisefac 15819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-sup 9308 df-oi 9376 df-card 9805 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-fz 13350 df-fzo 13493 df-seq 13832 df-exp 13893 df-hash 14155 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-clim 15301 df-prod 15720 df-risefac 15820 |
This theorem is referenced by: risefallfac 15838 risefacfac 15849 |
Copyright terms: Public domain | W3C validator |