MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacp1 Structured version   Visualization version   GIF version

Theorem fallfacp1 15937
Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
fallfacp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴𝑁)))

Proof of Theorem fallfacp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0cn 12391 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3 1cnd 11107 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℂ)
42, 3pncand 11473 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
54oveq2d 7362 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
65prodeq1d 15827 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘) = ∏𝑘 ∈ (0...𝑁)(𝐴𝑘))
7 elnn0uz 12777 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 216 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
98adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
10 elfznn0 13520 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
1110nn0cnd 12444 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
12 subcl 11359 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
1311, 12sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1413adantlr 715 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
15 oveq2 7354 . . . 4 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
169, 14, 15fprodm1 15874 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...𝑁)(𝐴𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) · (𝐴𝑁)))
176, 16eqtrd 2766 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) · (𝐴𝑁)))
18 peano2nn0 12421 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 fallfacval 15916 . . 3 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘))
2018, 19sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘))
21 fallfacval 15916 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2221oveq1d 7361 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 FallFac 𝑁) · (𝐴𝑁)) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) · (𝐴𝑁)))
2317, 20, 223eqtr4d 2776 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  0cn0 12381  cuz 12732  ...cfz 13407  cprod 15810   FallFac cfallfac 15911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-fallfac 15914
This theorem is referenced by:  fallfacp1d  15939  fallfac1  15941  fallfacfwd  15943  binomfallfaclem2  15947  bccp1k  44380  binomcxplemwb  44387
  Copyright terms: Public domain W3C validator