MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacp1 Structured version   Visualization version   GIF version

Theorem fallfacp1 15384
Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.)
Assertion
Ref Expression
fallfacp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴𝑁)))

Proof of Theorem fallfacp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0cn 11908 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21adantl 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3 1cnd 10636 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℂ)
42, 3pncand 10998 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
54oveq2d 7172 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
65prodeq1d 15275 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘) = ∏𝑘 ∈ (0...𝑁)(𝐴𝑘))
7 elnn0uz 12284 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 218 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
98adantl 484 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
10 elfznn0 13001 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
1110nn0cnd 11958 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
12 subcl 10885 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
1311, 12sylan2 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1413adantlr 713 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
15 oveq2 7164 . . . 4 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
169, 14, 15fprodm1 15321 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...𝑁)(𝐴𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) · (𝐴𝑁)))
176, 16eqtrd 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) · (𝐴𝑁)))
18 peano2nn0 11938 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 fallfacval 15363 . . 3 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘))
2018, 19sylan2 594 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴𝑘))
21 fallfacval 15363 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2221oveq1d 7171 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 FallFac 𝑁) · (𝐴𝑁)) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) · (𝐴𝑁)))
2317, 20, 223eqtr4d 2866 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  0cn0 11898  cuz 12244  ...cfz 12893  cprod 15259   FallFac cfallfac 15358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-fallfac 15361
This theorem is referenced by:  fallfacp1d  15386  fallfac1  15388  fallfacfwd  15390  binomfallfaclem2  15394  bccp1k  40693  binomcxplemwb  40700
  Copyright terms: Public domain W3C validator