Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fallfacp1 | Structured version Visualization version GIF version |
Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
fallfacp1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12293 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
3 | 1cnd 11020 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℂ) | |
4 | 2, 3 | pncand 11383 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁) |
5 | 4 | oveq2d 7323 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
6 | 5 | prodeq1d 15680 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 − 𝑘) = ∏𝑘 ∈ (0...𝑁)(𝐴 − 𝑘)) |
7 | elnn0uz 12673 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
8 | 7 | biimpi 215 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
9 | 8 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘0)) |
10 | elfznn0 13399 | . . . . . . 7 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
11 | 10 | nn0cnd 12345 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ) |
12 | subcl 11270 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 − 𝑘) ∈ ℂ) | |
13 | 11, 12 | sylan2 594 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 − 𝑘) ∈ ℂ) |
14 | 13 | adantlr 713 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 − 𝑘) ∈ ℂ) |
15 | oveq2 7315 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 − 𝑘) = (𝐴 − 𝑁)) | |
16 | 9, 14, 15 | fprodm1 15726 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...𝑁)(𝐴 − 𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) · (𝐴 − 𝑁))) |
17 | 6, 16 | eqtrd 2776 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 − 𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) · (𝐴 − 𝑁))) |
18 | peano2nn0 12323 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
19 | fallfacval 15768 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 − 𝑘)) | |
20 | 18, 19 | sylan2 594 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 − 𝑘)) |
21 | fallfacval 15768 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) | |
22 | 21 | oveq1d 7322 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁)) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) · (𝐴 − 𝑁))) |
23 | 17, 20, 22 | 3eqtr4d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 ℂcc 10919 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 − cmin 11255 ℕ0cn0 12283 ℤ≥cuz 12632 ...cfz 13289 ∏cprod 15664 FallFac cfallfac 15763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-fz 13290 df-fzo 13433 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-prod 15665 df-fallfac 15766 |
This theorem is referenced by: fallfacp1d 15791 fallfac1 15793 fallfacfwd 15795 binomfallfaclem2 15799 bccp1k 42172 binomcxplemwb 42179 |
Copyright terms: Public domain | W3C validator |