Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fallfaccllem | Structured version Visualization version GIF version |
Description: Lemma for falling factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
risefallfaccllem.1 | ⊢ 𝑆 ⊆ ℂ |
risefallfaccllem.2 | ⊢ 1 ∈ 𝑆 |
risefallfaccllem.3 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) |
fallfaccllem.4 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 − 𝑘) ∈ 𝑆) |
Ref | Expression |
---|---|
fallfaccllem | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risefallfaccllem.1 | . . . 4 ⊢ 𝑆 ⊆ ℂ | |
2 | 1 | sseli 3871 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ) |
3 | fallfacval 15448 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) | |
4 | 2, 3 | sylan 583 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) |
5 | 1 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ⊆ ℂ) |
6 | risefallfaccllem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) | |
7 | 6 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
8 | fzfid 13425 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → (0...(𝑁 − 1)) ∈ Fin) | |
9 | elfznn0 13084 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) | |
10 | fallfaccllem.4 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 − 𝑘) ∈ 𝑆) | |
11 | 9, 10 | sylan2 596 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − 𝑘) ∈ 𝑆) |
12 | risefallfaccllem.2 | . . . . 5 ⊢ 1 ∈ 𝑆 | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 1 ∈ 𝑆) |
14 | 5, 7, 8, 11, 13 | fprodcllem 15390 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) ∈ 𝑆) |
15 | 14 | adantr 484 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘) ∈ 𝑆) |
16 | 4, 15 | eqeltrd 2833 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ⊆ wss 3841 (class class class)co 7164 ℂcc 10606 0cc0 10608 1c1 10609 · cmul 10613 − cmin 10941 ℕ0cn0 11969 ...cfz 12974 ∏cprod 15344 FallFac cfallfac 15443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-oi 9040 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-z 12056 df-uz 12318 df-rp 12466 df-fz 12975 df-fzo 13118 df-seq 13454 df-exp 13515 df-hash 13776 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-clim 14928 df-prod 15345 df-fallfac 15446 |
This theorem is referenced by: fallfaccl 15455 refallfaccl 15457 zfallfaccl 15460 |
Copyright terms: Public domain | W3C validator |