![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fallfacval2 | Structured version Visualization version GIF version |
Description: One-based value of falling factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
Ref | Expression |
---|---|
fallfacval2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fallfacval 15226 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 − 𝑛)) | |
2 | 1zzd 11829 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ) | |
3 | 0zd 11808 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
4 | nn0z 11821 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
5 | peano2zm 11841 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
7 | 6 | adantl 474 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℤ) |
8 | simpl 475 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
9 | elfznn0 12819 | . . . . 5 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0) | |
10 | 9 | nn0cnd 11772 | . . . 4 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℂ) |
11 | subcl 10687 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝐴 − 𝑛) ∈ ℂ) | |
12 | 8, 10, 11 | syl2an 586 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 − 𝑛) ∈ ℂ) |
13 | oveq2 6986 | . . 3 ⊢ (𝑛 = (𝑘 − 1) → (𝐴 − 𝑛) = (𝐴 − (𝑘 − 1))) | |
14 | 2, 3, 7, 12, 13 | fprodshft 15193 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 − 𝑛) = ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 − (𝑘 − 1))) |
15 | 0p1e1 11572 | . . . . 5 ⊢ (0 + 1) = 1 | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0 + 1) = 1) |
17 | nn0cn 11721 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
18 | 1cnd 10436 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
19 | 17, 18 | npcand 10804 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
20 | 19 | adantl 474 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁) |
21 | 16, 20 | oveq12d 6996 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
22 | 21 | prodeq1d 15138 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) |
23 | 1, 14, 22 | 3eqtrd 2818 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 (class class class)co 6978 ℂcc 10335 0cc0 10337 1c1 10338 + caddc 10340 − cmin 10672 ℕ0cn0 11710 ℤcz 11796 ...cfz 12711 ∏cprod 15122 FallFac cfallfac 15221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-inf2 8900 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-pre-sup 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-1o 7907 df-oadd 7911 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-sup 8703 df-oi 8771 df-card 9164 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-3 11507 df-n0 11711 df-z 11797 df-uz 12062 df-rp 12208 df-fz 12712 df-fzo 12853 df-seq 13188 df-exp 13248 df-hash 13509 df-cj 14322 df-re 14323 df-im 14324 df-sqrt 14458 df-abs 14459 df-clim 14709 df-prod 15123 df-fallfac 15224 |
This theorem is referenced by: risefallfac 15241 fallfacfwd 15253 |
Copyright terms: Public domain | W3C validator |