| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fallfacval2 | Structured version Visualization version GIF version | ||
| Description: One-based value of falling factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
| Ref | Expression |
|---|---|
| fallfacval2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fallfacval 15908 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 − 𝑛)) | |
| 2 | 1zzd 12495 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ) | |
| 3 | 0zd 12472 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
| 4 | nn0z 12485 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 5 | peano2zm 12507 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℤ) |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
| 9 | elfznn0 13512 | . . . . 5 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0) | |
| 10 | 9 | nn0cnd 12436 | . . . 4 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℂ) |
| 11 | subcl 11351 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝐴 − 𝑛) ∈ ℂ) | |
| 12 | 8, 10, 11 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 − 𝑛) ∈ ℂ) |
| 13 | oveq2 7349 | . . 3 ⊢ (𝑛 = (𝑘 − 1) → (𝐴 − 𝑛) = (𝐴 − (𝑘 − 1))) | |
| 14 | 2, 3, 7, 12, 13 | fprodshft 15875 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 − 𝑛) = ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 − (𝑘 − 1))) |
| 15 | 0p1e1 12234 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0 + 1) = 1) |
| 17 | nn0cn 12383 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 18 | 1cnd 11099 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
| 19 | 17, 18 | npcand 11468 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
| 20 | 19 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁) |
| 21 | 16, 20 | oveq12d 7359 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 22 | 21 | prodeq1d 15819 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) |
| 23 | 1, 14, 22 | 3eqtrd 2769 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℂcc 10996 0cc0 10998 1c1 10999 + caddc 11001 − cmin 11336 ℕ0cn0 12373 ℤcz 12460 ...cfz 13399 ∏cprod 15802 FallFac cfallfac 15903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-prod 15803 df-fallfac 15906 |
| This theorem is referenced by: risefallfac 15923 fallfacfwd 15935 |
| Copyright terms: Public domain | W3C validator |