![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fallfac | Structured version Visualization version GIF version |
Description: The value of the zero falling factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
Ref | Expression |
---|---|
0fallfac | ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11256 | . . 3 ⊢ 0 ∈ ℂ | |
2 | nnnn0 12531 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | fallfacval 16011 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(0 − 𝑘)) | |
4 | 1, 2, 3 | sylancr 585 | . 2 ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(0 − 𝑘)) |
5 | nnm1nn0 12565 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
6 | nn0uz 12916 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | 5, 6 | eleqtrdi 2836 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ≥‘0)) |
8 | elfzelz 13555 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ) | |
9 | 8 | zcnd 12719 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℂ) |
10 | subcl 11509 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − 𝑘) ∈ ℂ) | |
11 | 1, 9, 10 | sylancr 585 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (0 − 𝑘) ∈ ℂ) |
12 | 11 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (0 − 𝑘) ∈ ℂ) |
13 | oveq2 7432 | . . . 4 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
14 | 0m0e0 12384 | . . . 4 ⊢ (0 − 0) = 0 | |
15 | 13, 14 | eqtrdi 2782 | . . 3 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
16 | 7, 12, 15 | fprod1p 15970 | . 2 ⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (0...(𝑁 − 1))(0 − 𝑘) = (0 · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(0 − 𝑘))) |
17 | fzfid 13993 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((0 + 1)...(𝑁 − 1)) ∈ Fin) | |
18 | elfzelz 13555 | . . . . . . 7 ⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → 𝑘 ∈ ℤ) | |
19 | 18 | zcnd 12719 | . . . . . 6 ⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → 𝑘 ∈ ℂ) |
20 | 1, 19, 10 | sylancr 585 | . . . . 5 ⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (0 − 𝑘) ∈ ℂ) |
21 | 20 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → (0 − 𝑘) ∈ ℂ) |
22 | 17, 21 | fprodcl 15954 | . . 3 ⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(0 − 𝑘) ∈ ℂ) |
23 | 22 | mul02d 11462 | . 2 ⊢ (𝑁 ∈ ℕ → (0 · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(0 − 𝑘)) = 0) |
24 | 4, 16, 23 | 3eqtrd 2770 | 1 ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 − cmin 11494 ℕcn 12264 ℕ0cn0 12524 ℤ≥cuz 12874 ...cfz 13538 ∏cprod 15907 FallFac cfallfac 16006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-prod 15908 df-fallfac 16009 |
This theorem is referenced by: 0risefac 16040 |
Copyright terms: Public domain | W3C validator |