Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0fallfac | Structured version Visualization version GIF version |
Description: The value of the zero falling factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
Ref | Expression |
---|---|
0fallfac | ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10951 | . . 3 ⊢ 0 ∈ ℂ | |
2 | nnnn0 12223 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | fallfacval 15700 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(0 − 𝑘)) | |
4 | 1, 2, 3 | sylancr 586 | . 2 ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(0 − 𝑘)) |
5 | nnm1nn0 12257 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
6 | nn0uz 12602 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | 5, 6 | eleqtrdi 2850 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ≥‘0)) |
8 | elfzelz 13238 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ) | |
9 | 8 | zcnd 12409 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℂ) |
10 | subcl 11203 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − 𝑘) ∈ ℂ) | |
11 | 1, 9, 10 | sylancr 586 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (0 − 𝑘) ∈ ℂ) |
12 | 11 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (0 − 𝑘) ∈ ℂ) |
13 | oveq2 7276 | . . . 4 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
14 | 0m0e0 12076 | . . . 4 ⊢ (0 − 0) = 0 | |
15 | 13, 14 | eqtrdi 2795 | . . 3 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
16 | 7, 12, 15 | fprod1p 15659 | . 2 ⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (0...(𝑁 − 1))(0 − 𝑘) = (0 · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(0 − 𝑘))) |
17 | fzfid 13674 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((0 + 1)...(𝑁 − 1)) ∈ Fin) | |
18 | elfzelz 13238 | . . . . . . 7 ⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → 𝑘 ∈ ℤ) | |
19 | 18 | zcnd 12409 | . . . . . 6 ⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → 𝑘 ∈ ℂ) |
20 | 1, 19, 10 | sylancr 586 | . . . . 5 ⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → (0 − 𝑘) ∈ ℂ) |
21 | 20 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → (0 − 𝑘) ∈ ℂ) |
22 | 17, 21 | fprodcl 15643 | . . 3 ⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(0 − 𝑘) ∈ ℂ) |
23 | 22 | mul02d 11156 | . 2 ⊢ (𝑁 ∈ ℕ → (0 · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(0 − 𝑘)) = 0) |
24 | 4, 16, 23 | 3eqtrd 2783 | 1 ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 ℕcn 11956 ℕ0cn0 12216 ℤ≥cuz 12564 ...cfz 13221 ∏cprod 15596 FallFac cfallfac 15695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-prod 15597 df-fallfac 15698 |
This theorem is referenced by: 0risefac 15729 |
Copyright terms: Public domain | W3C validator |