MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim Structured version   Visualization version   GIF version

Theorem fbflim 23800
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐡)
Assertion
Ref Expression
fbflim ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯))))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐡,𝑦   π‘₯,𝐽,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝐹,𝑦

Proof of Theorem fbflim
StepHypRef Expression
1 fbflim.3 . . . 4 𝐹 = (𝑋filGen𝐡)
2 fgcl 23702 . . . 4 (𝐡 ∈ (fBasβ€˜π‘‹) β†’ (𝑋filGen𝐡) ∈ (Filβ€˜π‘‹))
31, 2eqeltrid 2836 . . 3 (𝐡 ∈ (fBasβ€˜π‘‹) β†’ 𝐹 ∈ (Filβ€˜π‘‹))
4 flimopn 23799 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 ∈ (Filβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹))))
53, 4sylan2 592 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹))))
6 toponss 22749 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘₯ ∈ 𝐽) β†’ π‘₯ βŠ† 𝑋)
76ad4ant14 749 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ π‘₯ βŠ† 𝑋)
81eleq2i 2824 . . . . . . 7 (π‘₯ ∈ 𝐹 ↔ π‘₯ ∈ (𝑋filGen𝐡))
9 elfg 23695 . . . . . . . 8 (𝐡 ∈ (fBasβ€˜π‘‹) β†’ (π‘₯ ∈ (𝑋filGen𝐡) ↔ (π‘₯ βŠ† 𝑋 ∧ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯)))
109ad3antlr 728 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∈ (𝑋filGen𝐡) ↔ (π‘₯ βŠ† 𝑋 ∧ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯)))
118, 10bitrid 283 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∈ 𝐹 ↔ (π‘₯ βŠ† 𝑋 ∧ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯)))
127, 11mpbirand 704 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∈ 𝐹 ↔ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯))
1312imbi2d 340 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ 𝐽) β†’ ((𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) ↔ (𝐴 ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯)))
1413ralbidva 3174 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) ∧ 𝐴 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹) ↔ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯)))
1514pm5.32da 578 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) β†’ ((𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ π‘₯ ∈ 𝐹)) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯))))
165, 15bitrd 279 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐡 ∈ (fBasβ€˜π‘‹)) β†’ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘₯ ∈ 𝐽 (𝐴 ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7412  fBascfbas 21221  filGencfg 21222  TopOnctopon 22732  Filcfil 23669   fLim cflim 23758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-fbas 21230  df-fg 21231  df-top 22716  df-topon 22733  df-ntr 22844  df-nei 22922  df-fil 23670  df-flim 23763
This theorem is referenced by:  fbflim2  23801
  Copyright terms: Public domain W3C validator