![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbflim | Structured version Visualization version GIF version |
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
fbflim.3 | ⊢ 𝐹 = (𝑋filGen𝐵) |
Ref | Expression |
---|---|
fbflim | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbflim.3 | . . . 4 ⊢ 𝐹 = (𝑋filGen𝐵) | |
2 | fgcl 23867 | . . . 4 ⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) | |
3 | 1, 2 | eqeltrid 2830 | . . 3 ⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
4 | flimopn 23964 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) | |
5 | 3, 4 | sylan2 591 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |
6 | toponss 22914 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
7 | 6 | ad4ant14 750 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
8 | 1 | eleq2i 2818 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ (𝑋filGen𝐵)) |
9 | elfg 23860 | . . . . . . . 8 ⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) | |
10 | 9 | ad3antlr 729 | . . . . . . 7 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
11 | 8, 10 | bitrid 282 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
12 | 7, 11 | mpbirand 705 | . . . . 5 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐹 ↔ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)) |
13 | 12 | imbi2d 339 | . . . 4 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → ((𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
14 | 13 | ralbidva 3166 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
15 | 14 | pm5.32da 577 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
16 | 5, 15 | bitrd 278 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 ⊆ wss 3946 ‘cfv 6543 (class class class)co 7413 fBascfbas 21324 filGencfg 21325 TopOnctopon 22897 Filcfil 23834 fLim cflim 23923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-fbas 21333 df-fg 21334 df-top 22881 df-topon 22898 df-ntr 23009 df-nei 23087 df-fil 23835 df-flim 23928 |
This theorem is referenced by: fbflim2 23966 |
Copyright terms: Public domain | W3C validator |