MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim Structured version   Visualization version   GIF version

Theorem fbflim 23894
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fbflim
StepHypRef Expression
1 fbflim.3 . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 23796 . . . 4 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
31, 2eqeltrid 2837 . . 3 (𝐵 ∈ (fBas‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 flimopn 23893 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
53, 4sylan2 593 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
6 toponss 22845 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
76ad4ant14 752 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
81eleq2i 2825 . . . . . . 7 (𝑥𝐹𝑥 ∈ (𝑋filGen𝐵))
9 elfg 23789 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
109ad3antlr 731 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
118, 10bitrid 283 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
127, 11mpbirand 707 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐹 ↔ ∃𝑦𝐵 𝑦𝑥))
1312imbi2d 340 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → ((𝐴𝑥𝑥𝐹) ↔ (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥)))
1413ralbidva 3154 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) ↔ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥)))
1514pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
165, 15bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898  cfv 6488  (class class class)co 7354  fBascfbas 21283  filGencfg 21284  TopOnctopon 22828  Filcfil 23763   fLim cflim 23852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-fbas 21292  df-fg 21293  df-top 22812  df-topon 22829  df-ntr 22938  df-nei 23016  df-fil 23764  df-flim 23857
This theorem is referenced by:  fbflim2  23895
  Copyright terms: Public domain W3C validator