Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbflim | Structured version Visualization version GIF version |
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
fbflim.3 | ⊢ 𝐹 = (𝑋filGen𝐵) |
Ref | Expression |
---|---|
fbflim | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbflim.3 | . . . 4 ⊢ 𝐹 = (𝑋filGen𝐵) | |
2 | fgcl 23029 | . . . 4 ⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) | |
3 | 1, 2 | eqeltrid 2843 | . . 3 ⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
4 | flimopn 23126 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) | |
5 | 3, 4 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |
6 | toponss 22076 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
7 | 6 | ad4ant14 749 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
8 | 1 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ (𝑋filGen𝐵)) |
9 | elfg 23022 | . . . . . . . 8 ⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) | |
10 | 9 | ad3antlr 728 | . . . . . . 7 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
11 | 8, 10 | bitrid 282 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
12 | 7, 11 | mpbirand 704 | . . . . 5 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐹 ↔ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)) |
13 | 12 | imbi2d 341 | . . . 4 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → ((𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
14 | 13 | ralbidva 3111 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
15 | 14 | pm5.32da 579 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
16 | 5, 15 | bitrd 278 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 fBascfbas 20585 filGencfg 20586 TopOnctopon 22059 Filcfil 22996 fLim cflim 23085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-ntr 22171 df-nei 22249 df-fil 22997 df-flim 23090 |
This theorem is referenced by: fbflim2 23128 |
Copyright terms: Public domain | W3C validator |