![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbflim | Structured version Visualization version GIF version |
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
fbflim.3 | ⊢ 𝐹 = (𝑋filGen𝐵) |
Ref | Expression |
---|---|
fbflim | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbflim.3 | . . . 4 ⊢ 𝐹 = (𝑋filGen𝐵) | |
2 | fgcl 23907 | . . . 4 ⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋)) | |
3 | 1, 2 | eqeltrid 2848 | . . 3 ⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
4 | flimopn 24004 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) | |
5 | 3, 4 | sylan2 592 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) |
6 | toponss 22954 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
7 | 6 | ad4ant14 751 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
8 | 1 | eleq2i 2836 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ (𝑋filGen𝐵)) |
9 | elfg 23900 | . . . . . . . 8 ⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) | |
10 | 9 | ad3antlr 730 | . . . . . . 7 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
11 | 8, 10 | bitrid 283 | . . . . . 6 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
12 | 7, 11 | mpbirand 706 | . . . . 5 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐹 ↔ ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)) |
13 | 12 | imbi2d 340 | . . . 4 ⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝐽) → ((𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
14 | 13 | ralbidva 3182 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹) ↔ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
15 | 14 | pm5.32da 578 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
16 | 5, 15 | bitrd 279 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 fBascfbas 21375 filGencfg 21376 TopOnctopon 22937 Filcfil 23874 fLim cflim 23963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-ntr 23049 df-nei 23127 df-fil 23875 df-flim 23968 |
This theorem is referenced by: fbflim2 24006 |
Copyright terms: Public domain | W3C validator |