MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim Structured version   Visualization version   GIF version

Theorem fbflim 23965
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fbflim
StepHypRef Expression
1 fbflim.3 . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 23867 . . . 4 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
31, 2eqeltrid 2830 . . 3 (𝐵 ∈ (fBas‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 flimopn 23964 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
53, 4sylan2 591 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
6 toponss 22914 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
76ad4ant14 750 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
81eleq2i 2818 . . . . . . 7 (𝑥𝐹𝑥 ∈ (𝑋filGen𝐵))
9 elfg 23860 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
109ad3antlr 729 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
118, 10bitrid 282 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
127, 11mpbirand 705 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐹 ↔ ∃𝑦𝐵 𝑦𝑥))
1312imbi2d 339 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → ((𝐴𝑥𝑥𝐹) ↔ (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥)))
1413ralbidva 3166 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) ↔ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥)))
1514pm5.32da 577 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
165, 15bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  wss 3946  cfv 6543  (class class class)co 7413  fBascfbas 21324  filGencfg 21325  TopOnctopon 22897  Filcfil 23834   fLim cflim 23923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-fbas 21333  df-fg 21334  df-top 22881  df-topon 22898  df-ntr 23009  df-nei 23087  df-fil 23835  df-flim 23928
This theorem is referenced by:  fbflim2  23966
  Copyright terms: Public domain W3C validator