MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim Structured version   Visualization version   GIF version

Theorem fbflim 23127
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fbflim
StepHypRef Expression
1 fbflim.3 . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 23029 . . . 4 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
31, 2eqeltrid 2843 . . 3 (𝐵 ∈ (fBas‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 flimopn 23126 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
53, 4sylan2 593 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
6 toponss 22076 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
76ad4ant14 749 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
81eleq2i 2830 . . . . . . 7 (𝑥𝐹𝑥 ∈ (𝑋filGen𝐵))
9 elfg 23022 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
109ad3antlr 728 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥 ∈ (𝑋filGen𝐵) ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
118, 10bitrid 282 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ∃𝑦𝐵 𝑦𝑥)))
127, 11mpbirand 704 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐹 ↔ ∃𝑦𝐵 𝑦𝑥))
1312imbi2d 341 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → ((𝐴𝑥𝑥𝐹) ↔ (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥)))
1413ralbidva 3111 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) ↔ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥)))
1514pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
165, 15bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥 → ∃𝑦𝐵 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  cfv 6433  (class class class)co 7275  fBascfbas 20585  filGencfg 20586  TopOnctopon 22059  Filcfil 22996   fLim cflim 23085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-ntr 22171  df-nei 22249  df-fil 22997  df-flim 23090
This theorem is referenced by:  fbflim2  23128
  Copyright terms: Public domain W3C validator