MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1sca Structured version   Visualization version   GIF version

Theorem evls1sca 22342
Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.)
Hypotheses
Ref Expression
evls1sca.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1sca.w 𝑊 = (Poly1𝑈)
evls1sca.u 𝑈 = (𝑆s 𝑅)
evls1sca.b 𝐵 = (Base‘𝑆)
evls1sca.a 𝐴 = (algSc‘𝑊)
evls1sca.s (𝜑𝑆 ∈ CRing)
evls1sca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1sca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1sca (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evls1sca
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 8516 . . . . . 6 1o ∈ On
2 evls1sca.s . . . . . 6 (𝜑𝑆 ∈ CRing)
3 evls1sca.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 eqid 2734 . . . . . . 7 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
5 eqid 2734 . . . . . . 7 (1o mPoly 𝑈) = (1o mPoly 𝑈)
6 evls1sca.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
7 eqid 2734 . . . . . . 7 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
8 evls1sca.b . . . . . . 7 𝐵 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 22129 . . . . . 6 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
101, 2, 3, 9mp3an2i 1465 . . . . 5 (𝜑 → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
11 eqid 2734 . . . . . 6 (Base‘(1o mPoly 𝑈)) = (Base‘(1o mPoly 𝑈))
12 eqid 2734 . . . . . 6 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
1311, 12rhmf 20501 . . . . 5 (((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))) → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
1410, 13syl 17 . . . 4 (𝜑 → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
15 evls1sca.a . . . . . . 7 𝐴 = (algSc‘𝑊)
16 eqid 2734 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
176subrgring 20590 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
183, 17syl 17 . . . . . . . 8 (𝜑𝑈 ∈ Ring)
19 evls1sca.w . . . . . . . . 9 𝑊 = (Poly1𝑈)
2019ply1ring 22264 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
2118, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ Ring)
2219ply1lmod 22268 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
2318, 22syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
24 eqid 2734 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2734 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2615, 16, 21, 23, 24, 25asclf 21919 . . . . . 6 (𝜑𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))
278subrgss 20588 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑅𝐵)
296, 8ressbas2 17282 . . . . . . . . 9 (𝑅𝐵𝑅 = (Base‘𝑈))
3028, 29syl 17 . . . . . . . 8 (𝜑𝑅 = (Base‘𝑈))
3119ply1sca 22269 . . . . . . . . . 10 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
3218, 31syl 17 . . . . . . . . 9 (𝜑𝑈 = (Scalar‘𝑊))
3332fveq2d 6910 . . . . . . . 8 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3430, 33eqtrd 2774 . . . . . . 7 (𝜑𝑅 = (Base‘(Scalar‘𝑊)))
3519, 25ply1bas 22211 . . . . . . . . 9 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
3635a1i 11 . . . . . . . 8 (𝜑 → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
3736eqcomd 2740 . . . . . . 7 (𝜑 → (Base‘(1o mPoly 𝑈)) = (Base‘𝑊))
3834, 37feq23d 6731 . . . . . 6 (𝜑 → (𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)) ↔ 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)))
3926, 38mpbird 257 . . . . 5 (𝜑𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)))
40 evls1sca.x . . . . 5 (𝜑𝑋𝑅)
4139, 40ffvelcdmd 7104 . . . 4 (𝜑 → (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈)))
42 fvco3 7007 . . . 4 ((((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))) ∧ (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈))) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4314, 41, 42syl2anc 584 . . 3 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4415a1i 11 . . . . . . . 8 (𝜑𝐴 = (algSc‘𝑊))
45 eqid 2734 . . . . . . . . 9 (algSc‘𝑊) = (algSc‘𝑊)
4619, 45ply1ascl 22276 . . . . . . . 8 (algSc‘𝑊) = (algSc‘(1o mPoly 𝑈))
4744, 46eqtrdi 2790 . . . . . . 7 (𝜑𝐴 = (algSc‘(1o mPoly 𝑈)))
4847fveq1d 6908 . . . . . 6 (𝜑 → (𝐴𝑋) = ((algSc‘(1o mPoly 𝑈))‘𝑋))
4948fveq2d 6910 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)))
50 eqid 2734 . . . . . 6 (algSc‘(1o mPoly 𝑈)) = (algSc‘(1o mPoly 𝑈))
511a1i 11 . . . . . 6 (𝜑 → 1o ∈ On)
524, 5, 6, 8, 50, 51, 2, 3, 40evlssca 22130 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
5349, 52eqtrd 2774 . . . 4 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
5453fveq2d 6910 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})))
55 eqidd 2735 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
56 coeq1 5870 . . . . . 6 (𝑥 = ((𝐵m 1o) × {𝑋}) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5756adantl 481 . . . . 5 ((𝜑𝑥 = ((𝐵m 1o) × {𝑋})) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5828, 40sseldd 3995 . . . . . . 7 (𝜑𝑋𝐵)
59 fconst6g 6797 . . . . . . 7 (𝑋𝐵 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
6058, 59syl 17 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
618fvexi 6920 . . . . . . . 8 𝐵 ∈ V
6261a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
63 ovex 7463 . . . . . . . 8 (𝐵m 1o) ∈ V
6463a1i 11 . . . . . . 7 (𝜑 → (𝐵m 1o) ∈ V)
6562, 64elmapd 8878 . . . . . 6 (𝜑 → (((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)) ↔ ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵))
6660, 65mpbird 257 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)))
67 snex 5441 . . . . . . . 8 {𝑋} ∈ V
6863, 67xpex 7771 . . . . . . 7 ((𝐵m 1o) × {𝑋}) ∈ V
6968a1i 11 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ V)
7062mptexd 7243 . . . . . 6 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V)
71 coexg 7951 . . . . . 6 ((((𝐵m 1o) × {𝑋}) ∈ V ∧ (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7269, 70, 71syl2anc 584 . . . . 5 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7355, 57, 66, 72fvmptd 7022 . . . 4 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
74 fconst6g 6797 . . . . . . 7 (𝑦𝐵 → (1o × {𝑦}):1o𝐵)
7574adantl 481 . . . . . 6 ((𝜑𝑦𝐵) → (1o × {𝑦}):1o𝐵)
7661, 1pm3.2i 470 . . . . . . . 8 (𝐵 ∈ V ∧ 1o ∈ On)
7776a1i 11 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐵 ∈ V ∧ 1o ∈ On))
78 elmapg 8877 . . . . . . 7 ((𝐵 ∈ V ∧ 1o ∈ On) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
7977, 78syl 17 . . . . . 6 ((𝜑𝑦𝐵) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
8075, 79mpbird 257 . . . . 5 ((𝜑𝑦𝐵) → (1o × {𝑦}) ∈ (𝐵m 1o))
81 eqidd 2735 . . . . 5 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
82 fconstmpt 5750 . . . . . 6 ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋)
8382a1i 11 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋))
84 eqidd 2735 . . . . 5 (𝑧 = (1o × {𝑦}) → 𝑋 = 𝑋)
8580, 81, 83, 84fmptco 7148 . . . 4 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
8673, 85eqtrd 2774 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (𝑦𝐵𝑋))
8743, 54, 863eqtrd 2778 . 2 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = (𝑦𝐵𝑋))
88 elpwg 4607 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
8927, 88mpbird 257 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ 𝒫 𝐵)
903, 89syl 17 . . . 4 (𝜑𝑅 ∈ 𝒫 𝐵)
91 evls1sca.q . . . . 5 𝑄 = (𝑆 evalSub1 𝑅)
92 eqid 2734 . . . . 5 (1o evalSub 𝑆) = (1o evalSub 𝑆)
9391, 92, 8evls1fval 22338 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
942, 90, 93syl2anc 584 . . 3 (𝜑𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
9594fveq1d 6908 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)))
96 fconstmpt 5750 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
9796a1i 11 . 2 (𝜑 → (𝐵 × {𝑋}) = (𝑦𝐵𝑋))
9887, 95, 973eqtr4d 2784 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962  𝒫 cpw 4604  {csn 4630  cmpt 5230   × cxp 5686  ccom 5692  Oncon0 6385  wf 6558  cfv 6562  (class class class)co 7430  1oc1o 8497  m cmap 8864  Basecbs 17244  s cress 17273  Scalarcsca 17300  s cpws 17492  Ringcrg 20250  CRingccrg 20251   RingHom crh 20485  SubRingcsubrg 20585  LModclmod 20874  algSccascl 21889   mPoly cmpl 21943   evalSub ces 22113  Poly1cpl1 22193   evalSub1 ces1 22332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-psr1 22196  df-ply1 22198  df-evls1 22334
This theorem is referenced by:  evls1scasrng  22358  evls1scafv  22385  evls1maprnss  22397
  Copyright terms: Public domain W3C validator