MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1sca Structured version   Visualization version   GIF version

Theorem evls1sca 22217
Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.)
Hypotheses
Ref Expression
evls1sca.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1sca.w 𝑊 = (Poly1𝑈)
evls1sca.u 𝑈 = (𝑆s 𝑅)
evls1sca.b 𝐵 = (Base‘𝑆)
evls1sca.a 𝐴 = (algSc‘𝑊)
evls1sca.s (𝜑𝑆 ∈ CRing)
evls1sca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1sca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1sca (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evls1sca
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 8449 . . . . . 6 1o ∈ On
2 evls1sca.s . . . . . 6 (𝜑𝑆 ∈ CRing)
3 evls1sca.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 eqid 2730 . . . . . . 7 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
5 eqid 2730 . . . . . . 7 (1o mPoly 𝑈) = (1o mPoly 𝑈)
6 evls1sca.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
7 eqid 2730 . . . . . . 7 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
8 evls1sca.b . . . . . . 7 𝐵 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 22002 . . . . . 6 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
101, 2, 3, 9mp3an2i 1468 . . . . 5 (𝜑 → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
11 eqid 2730 . . . . . 6 (Base‘(1o mPoly 𝑈)) = (Base‘(1o mPoly 𝑈))
12 eqid 2730 . . . . . 6 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
1311, 12rhmf 20401 . . . . 5 (((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))) → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
1410, 13syl 17 . . . 4 (𝜑 → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
15 evls1sca.a . . . . . . 7 𝐴 = (algSc‘𝑊)
16 eqid 2730 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
176subrgring 20490 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
183, 17syl 17 . . . . . . . 8 (𝜑𝑈 ∈ Ring)
19 evls1sca.w . . . . . . . . 9 𝑊 = (Poly1𝑈)
2019ply1ring 22139 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
2118, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ Ring)
2219ply1lmod 22143 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
2318, 22syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
24 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2615, 16, 21, 23, 24, 25asclf 21798 . . . . . 6 (𝜑𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))
278subrgss 20488 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑅𝐵)
296, 8ressbas2 17215 . . . . . . . . 9 (𝑅𝐵𝑅 = (Base‘𝑈))
3028, 29syl 17 . . . . . . . 8 (𝜑𝑅 = (Base‘𝑈))
3119ply1sca 22144 . . . . . . . . . 10 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
3218, 31syl 17 . . . . . . . . 9 (𝜑𝑈 = (Scalar‘𝑊))
3332fveq2d 6865 . . . . . . . 8 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3430, 33eqtrd 2765 . . . . . . 7 (𝜑𝑅 = (Base‘(Scalar‘𝑊)))
3519, 25ply1bas 22086 . . . . . . . . 9 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
3635a1i 11 . . . . . . . 8 (𝜑 → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
3736eqcomd 2736 . . . . . . 7 (𝜑 → (Base‘(1o mPoly 𝑈)) = (Base‘𝑊))
3834, 37feq23d 6686 . . . . . 6 (𝜑 → (𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)) ↔ 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)))
3926, 38mpbird 257 . . . . 5 (𝜑𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)))
40 evls1sca.x . . . . 5 (𝜑𝑋𝑅)
4139, 40ffvelcdmd 7060 . . . 4 (𝜑 → (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈)))
42 fvco3 6963 . . . 4 ((((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))) ∧ (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈))) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4314, 41, 42syl2anc 584 . . 3 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4415a1i 11 . . . . . . . 8 (𝜑𝐴 = (algSc‘𝑊))
45 eqid 2730 . . . . . . . . 9 (algSc‘𝑊) = (algSc‘𝑊)
4619, 45ply1ascl 22151 . . . . . . . 8 (algSc‘𝑊) = (algSc‘(1o mPoly 𝑈))
4744, 46eqtrdi 2781 . . . . . . 7 (𝜑𝐴 = (algSc‘(1o mPoly 𝑈)))
4847fveq1d 6863 . . . . . 6 (𝜑 → (𝐴𝑋) = ((algSc‘(1o mPoly 𝑈))‘𝑋))
4948fveq2d 6865 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)))
50 eqid 2730 . . . . . 6 (algSc‘(1o mPoly 𝑈)) = (algSc‘(1o mPoly 𝑈))
511a1i 11 . . . . . 6 (𝜑 → 1o ∈ On)
524, 5, 6, 8, 50, 51, 2, 3, 40evlssca 22003 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
5349, 52eqtrd 2765 . . . 4 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
5453fveq2d 6865 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})))
55 eqidd 2731 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
56 coeq1 5824 . . . . . 6 (𝑥 = ((𝐵m 1o) × {𝑋}) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5756adantl 481 . . . . 5 ((𝜑𝑥 = ((𝐵m 1o) × {𝑋})) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5828, 40sseldd 3950 . . . . . . 7 (𝜑𝑋𝐵)
59 fconst6g 6752 . . . . . . 7 (𝑋𝐵 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
6058, 59syl 17 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
618fvexi 6875 . . . . . . . 8 𝐵 ∈ V
6261a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
63 ovex 7423 . . . . . . . 8 (𝐵m 1o) ∈ V
6463a1i 11 . . . . . . 7 (𝜑 → (𝐵m 1o) ∈ V)
6562, 64elmapd 8816 . . . . . 6 (𝜑 → (((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)) ↔ ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵))
6660, 65mpbird 257 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)))
67 snex 5394 . . . . . . . 8 {𝑋} ∈ V
6863, 67xpex 7732 . . . . . . 7 ((𝐵m 1o) × {𝑋}) ∈ V
6968a1i 11 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ V)
7062mptexd 7201 . . . . . 6 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V)
71 coexg 7908 . . . . . 6 ((((𝐵m 1o) × {𝑋}) ∈ V ∧ (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7269, 70, 71syl2anc 584 . . . . 5 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7355, 57, 66, 72fvmptd 6978 . . . 4 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
74 fconst6g 6752 . . . . . . 7 (𝑦𝐵 → (1o × {𝑦}):1o𝐵)
7574adantl 481 . . . . . 6 ((𝜑𝑦𝐵) → (1o × {𝑦}):1o𝐵)
7661, 1pm3.2i 470 . . . . . . . 8 (𝐵 ∈ V ∧ 1o ∈ On)
7776a1i 11 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐵 ∈ V ∧ 1o ∈ On))
78 elmapg 8815 . . . . . . 7 ((𝐵 ∈ V ∧ 1o ∈ On) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
7977, 78syl 17 . . . . . 6 ((𝜑𝑦𝐵) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
8075, 79mpbird 257 . . . . 5 ((𝜑𝑦𝐵) → (1o × {𝑦}) ∈ (𝐵m 1o))
81 eqidd 2731 . . . . 5 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
82 fconstmpt 5703 . . . . . 6 ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋)
8382a1i 11 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋))
84 eqidd 2731 . . . . 5 (𝑧 = (1o × {𝑦}) → 𝑋 = 𝑋)
8580, 81, 83, 84fmptco 7104 . . . 4 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
8673, 85eqtrd 2765 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (𝑦𝐵𝑋))
8743, 54, 863eqtrd 2769 . 2 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = (𝑦𝐵𝑋))
88 elpwg 4569 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
8927, 88mpbird 257 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ 𝒫 𝐵)
903, 89syl 17 . . . 4 (𝜑𝑅 ∈ 𝒫 𝐵)
91 evls1sca.q . . . . 5 𝑄 = (𝑆 evalSub1 𝑅)
92 eqid 2730 . . . . 5 (1o evalSub 𝑆) = (1o evalSub 𝑆)
9391, 92, 8evls1fval 22213 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
942, 90, 93syl2anc 584 . . 3 (𝜑𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
9594fveq1d 6863 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)))
96 fconstmpt 5703 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
9796a1i 11 . 2 (𝜑 → (𝐵 × {𝑋}) = (𝑦𝐵𝑋))
9887, 95, 973eqtr4d 2775 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566  {csn 4592  cmpt 5191   × cxp 5639  ccom 5645  Oncon0 6335  wf 6510  cfv 6514  (class class class)co 7390  1oc1o 8430  m cmap 8802  Basecbs 17186  s cress 17207  Scalarcsca 17230  s cpws 17416  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  SubRingcsubrg 20485  LModclmod 20773  algSccascl 21768   mPoly cmpl 21822   evalSub ces 21986  Poly1cpl1 22068   evalSub1 ces1 22207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-psr1 22071  df-ply1 22073  df-evls1 22209
This theorem is referenced by:  evls1scasrng  22233  evls1scafv  22260  evls1maprnss  22272
  Copyright terms: Public domain W3C validator