MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1sca Structured version   Visualization version   GIF version

Theorem evls1sca 22259
Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.)
Hypotheses
Ref Expression
evls1sca.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1sca.w 𝑊 = (Poly1𝑈)
evls1sca.u 𝑈 = (𝑆s 𝑅)
evls1sca.b 𝐵 = (Base‘𝑆)
evls1sca.a 𝐴 = (algSc‘𝑊)
evls1sca.s (𝜑𝑆 ∈ CRing)
evls1sca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1sca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1sca (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evls1sca
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 8490 . . . . . 6 1o ∈ On
2 evls1sca.s . . . . . 6 (𝜑𝑆 ∈ CRing)
3 evls1sca.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 eqid 2735 . . . . . . 7 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
5 eqid 2735 . . . . . . 7 (1o mPoly 𝑈) = (1o mPoly 𝑈)
6 evls1sca.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
7 eqid 2735 . . . . . . 7 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
8 evls1sca.b . . . . . . 7 𝐵 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 22044 . . . . . 6 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
101, 2, 3, 9mp3an2i 1468 . . . . 5 (𝜑 → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
11 eqid 2735 . . . . . 6 (Base‘(1o mPoly 𝑈)) = (Base‘(1o mPoly 𝑈))
12 eqid 2735 . . . . . 6 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
1311, 12rhmf 20443 . . . . 5 (((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))) → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
1410, 13syl 17 . . . 4 (𝜑 → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
15 evls1sca.a . . . . . . 7 𝐴 = (algSc‘𝑊)
16 eqid 2735 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
176subrgring 20532 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
183, 17syl 17 . . . . . . . 8 (𝜑𝑈 ∈ Ring)
19 evls1sca.w . . . . . . . . 9 𝑊 = (Poly1𝑈)
2019ply1ring 22181 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
2118, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ Ring)
2219ply1lmod 22185 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
2318, 22syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
24 eqid 2735 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2735 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2615, 16, 21, 23, 24, 25asclf 21840 . . . . . 6 (𝜑𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))
278subrgss 20530 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑅𝐵)
296, 8ressbas2 17257 . . . . . . . . 9 (𝑅𝐵𝑅 = (Base‘𝑈))
3028, 29syl 17 . . . . . . . 8 (𝜑𝑅 = (Base‘𝑈))
3119ply1sca 22186 . . . . . . . . . 10 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
3218, 31syl 17 . . . . . . . . 9 (𝜑𝑈 = (Scalar‘𝑊))
3332fveq2d 6879 . . . . . . . 8 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3430, 33eqtrd 2770 . . . . . . 7 (𝜑𝑅 = (Base‘(Scalar‘𝑊)))
3519, 25ply1bas 22128 . . . . . . . . 9 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
3635a1i 11 . . . . . . . 8 (𝜑 → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
3736eqcomd 2741 . . . . . . 7 (𝜑 → (Base‘(1o mPoly 𝑈)) = (Base‘𝑊))
3834, 37feq23d 6700 . . . . . 6 (𝜑 → (𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)) ↔ 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)))
3926, 38mpbird 257 . . . . 5 (𝜑𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)))
40 evls1sca.x . . . . 5 (𝜑𝑋𝑅)
4139, 40ffvelcdmd 7074 . . . 4 (𝜑 → (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈)))
42 fvco3 6977 . . . 4 ((((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))) ∧ (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈))) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4314, 41, 42syl2anc 584 . . 3 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4415a1i 11 . . . . . . . 8 (𝜑𝐴 = (algSc‘𝑊))
45 eqid 2735 . . . . . . . . 9 (algSc‘𝑊) = (algSc‘𝑊)
4619, 45ply1ascl 22193 . . . . . . . 8 (algSc‘𝑊) = (algSc‘(1o mPoly 𝑈))
4744, 46eqtrdi 2786 . . . . . . 7 (𝜑𝐴 = (algSc‘(1o mPoly 𝑈)))
4847fveq1d 6877 . . . . . 6 (𝜑 → (𝐴𝑋) = ((algSc‘(1o mPoly 𝑈))‘𝑋))
4948fveq2d 6879 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)))
50 eqid 2735 . . . . . 6 (algSc‘(1o mPoly 𝑈)) = (algSc‘(1o mPoly 𝑈))
511a1i 11 . . . . . 6 (𝜑 → 1o ∈ On)
524, 5, 6, 8, 50, 51, 2, 3, 40evlssca 22045 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
5349, 52eqtrd 2770 . . . 4 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
5453fveq2d 6879 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})))
55 eqidd 2736 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
56 coeq1 5837 . . . . . 6 (𝑥 = ((𝐵m 1o) × {𝑋}) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5756adantl 481 . . . . 5 ((𝜑𝑥 = ((𝐵m 1o) × {𝑋})) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5828, 40sseldd 3959 . . . . . . 7 (𝜑𝑋𝐵)
59 fconst6g 6766 . . . . . . 7 (𝑋𝐵 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
6058, 59syl 17 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
618fvexi 6889 . . . . . . . 8 𝐵 ∈ V
6261a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
63 ovex 7436 . . . . . . . 8 (𝐵m 1o) ∈ V
6463a1i 11 . . . . . . 7 (𝜑 → (𝐵m 1o) ∈ V)
6562, 64elmapd 8852 . . . . . 6 (𝜑 → (((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)) ↔ ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵))
6660, 65mpbird 257 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)))
67 snex 5406 . . . . . . . 8 {𝑋} ∈ V
6863, 67xpex 7745 . . . . . . 7 ((𝐵m 1o) × {𝑋}) ∈ V
6968a1i 11 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ V)
7062mptexd 7215 . . . . . 6 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V)
71 coexg 7923 . . . . . 6 ((((𝐵m 1o) × {𝑋}) ∈ V ∧ (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7269, 70, 71syl2anc 584 . . . . 5 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7355, 57, 66, 72fvmptd 6992 . . . 4 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
74 fconst6g 6766 . . . . . . 7 (𝑦𝐵 → (1o × {𝑦}):1o𝐵)
7574adantl 481 . . . . . 6 ((𝜑𝑦𝐵) → (1o × {𝑦}):1o𝐵)
7661, 1pm3.2i 470 . . . . . . . 8 (𝐵 ∈ V ∧ 1o ∈ On)
7776a1i 11 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐵 ∈ V ∧ 1o ∈ On))
78 elmapg 8851 . . . . . . 7 ((𝐵 ∈ V ∧ 1o ∈ On) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
7977, 78syl 17 . . . . . 6 ((𝜑𝑦𝐵) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
8075, 79mpbird 257 . . . . 5 ((𝜑𝑦𝐵) → (1o × {𝑦}) ∈ (𝐵m 1o))
81 eqidd 2736 . . . . 5 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
82 fconstmpt 5716 . . . . . 6 ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋)
8382a1i 11 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋))
84 eqidd 2736 . . . . 5 (𝑧 = (1o × {𝑦}) → 𝑋 = 𝑋)
8580, 81, 83, 84fmptco 7118 . . . 4 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
8673, 85eqtrd 2770 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (𝑦𝐵𝑋))
8743, 54, 863eqtrd 2774 . 2 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = (𝑦𝐵𝑋))
88 elpwg 4578 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
8927, 88mpbird 257 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ 𝒫 𝐵)
903, 89syl 17 . . . 4 (𝜑𝑅 ∈ 𝒫 𝐵)
91 evls1sca.q . . . . 5 𝑄 = (𝑆 evalSub1 𝑅)
92 eqid 2735 . . . . 5 (1o evalSub 𝑆) = (1o evalSub 𝑆)
9391, 92, 8evls1fval 22255 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
942, 90, 93syl2anc 584 . . 3 (𝜑𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
9594fveq1d 6877 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)))
96 fconstmpt 5716 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
9796a1i 11 . 2 (𝜑 → (𝐵 × {𝑋}) = (𝑦𝐵𝑋))
9887, 95, 973eqtr4d 2780 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  𝒫 cpw 4575  {csn 4601  cmpt 5201   × cxp 5652  ccom 5658  Oncon0 6352  wf 6526  cfv 6530  (class class class)co 7403  1oc1o 8471  m cmap 8838  Basecbs 17226  s cress 17249  Scalarcsca 17272  s cpws 17458  Ringcrg 20191  CRingccrg 20192   RingHom crh 20427  SubRingcsubrg 20527  LModclmod 20815  algSccascl 21810   mPoly cmpl 21864   evalSub ces 22028  Poly1cpl1 22110   evalSub1 ces1 22249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-lmod 20817  df-lss 20887  df-lsp 20927  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-psr1 22113  df-ply1 22115  df-evls1 22251
This theorem is referenced by:  evls1scasrng  22275  evls1scafv  22302  evls1maprnss  22314
  Copyright terms: Public domain W3C validator