MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1sca Structured version   Visualization version   GIF version

Theorem evls1sca 22208
Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.)
Hypotheses
Ref Expression
evls1sca.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1sca.w 𝑊 = (Poly1𝑈)
evls1sca.u 𝑈 = (𝑆s 𝑅)
evls1sca.b 𝐵 = (Base‘𝑆)
evls1sca.a 𝐴 = (algSc‘𝑊)
evls1sca.s (𝜑𝑆 ∈ CRing)
evls1sca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1sca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1sca (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evls1sca
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 8400 . . . . . 6 1o ∈ On
2 evls1sca.s . . . . . 6 (𝜑𝑆 ∈ CRing)
3 evls1sca.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 eqid 2729 . . . . . . 7 ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅)
5 eqid 2729 . . . . . . 7 (1o mPoly 𝑈) = (1o mPoly 𝑈)
6 evls1sca.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
7 eqid 2729 . . . . . . 7 (𝑆s (𝐵m 1o)) = (𝑆s (𝐵m 1o))
8 evls1sca.b . . . . . . 7 𝐵 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 21993 . . . . . 6 ((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
101, 2, 3, 9mp3an2i 1468 . . . . 5 (𝜑 → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))))
11 eqid 2729 . . . . . 6 (Base‘(1o mPoly 𝑈)) = (Base‘(1o mPoly 𝑈))
12 eqid 2729 . . . . . 6 (Base‘(𝑆s (𝐵m 1o))) = (Base‘(𝑆s (𝐵m 1o)))
1311, 12rhmf 20370 . . . . 5 (((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆s (𝐵m 1o))) → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
1410, 13syl 17 . . . 4 (𝜑 → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))))
15 evls1sca.a . . . . . . 7 𝐴 = (algSc‘𝑊)
16 eqid 2729 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
176subrgring 20459 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
183, 17syl 17 . . . . . . . 8 (𝜑𝑈 ∈ Ring)
19 evls1sca.w . . . . . . . . 9 𝑊 = (Poly1𝑈)
2019ply1ring 22130 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
2118, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ Ring)
2219ply1lmod 22134 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
2318, 22syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
24 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2615, 16, 21, 23, 24, 25asclf 21789 . . . . . 6 (𝜑𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))
278subrgss 20457 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑅𝐵)
296, 8ressbas2 17149 . . . . . . . . 9 (𝑅𝐵𝑅 = (Base‘𝑈))
3028, 29syl 17 . . . . . . . 8 (𝜑𝑅 = (Base‘𝑈))
3119ply1sca 22135 . . . . . . . . . 10 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
3218, 31syl 17 . . . . . . . . 9 (𝜑𝑈 = (Scalar‘𝑊))
3332fveq2d 6826 . . . . . . . 8 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3430, 33eqtrd 2764 . . . . . . 7 (𝜑𝑅 = (Base‘(Scalar‘𝑊)))
3519, 25ply1bas 22077 . . . . . . . . 9 (Base‘𝑊) = (Base‘(1o mPoly 𝑈))
3635a1i 11 . . . . . . . 8 (𝜑 → (Base‘𝑊) = (Base‘(1o mPoly 𝑈)))
3736eqcomd 2735 . . . . . . 7 (𝜑 → (Base‘(1o mPoly 𝑈)) = (Base‘𝑊))
3834, 37feq23d 6647 . . . . . 6 (𝜑 → (𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)) ↔ 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)))
3926, 38mpbird 257 . . . . 5 (𝜑𝐴:𝑅⟶(Base‘(1o mPoly 𝑈)))
40 evls1sca.x . . . . 5 (𝜑𝑋𝑅)
4139, 40ffvelcdmd 7019 . . . 4 (𝜑 → (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈)))
42 fvco3 6922 . . . 4 ((((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆s (𝐵m 1o))) ∧ (𝐴𝑋) ∈ (Base‘(1o mPoly 𝑈))) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4314, 41, 42syl2anc 584 . . 3 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))))
4415a1i 11 . . . . . . . 8 (𝜑𝐴 = (algSc‘𝑊))
45 eqid 2729 . . . . . . . . 9 (algSc‘𝑊) = (algSc‘𝑊)
4619, 45ply1ascl 22142 . . . . . . . 8 (algSc‘𝑊) = (algSc‘(1o mPoly 𝑈))
4744, 46eqtrdi 2780 . . . . . . 7 (𝜑𝐴 = (algSc‘(1o mPoly 𝑈)))
4847fveq1d 6824 . . . . . 6 (𝜑 → (𝐴𝑋) = ((algSc‘(1o mPoly 𝑈))‘𝑋))
4948fveq2d 6826 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)))
50 eqid 2729 . . . . . 6 (algSc‘(1o mPoly 𝑈)) = (algSc‘(1o mPoly 𝑈))
511a1i 11 . . . . . 6 (𝜑 → 1o ∈ On)
524, 5, 6, 8, 50, 51, 2, 3, 40evlssca 21994 . . . . 5 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly 𝑈))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
5349, 52eqtrd 2764 . . . 4 (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
5453fveq2d 6826 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(((1o evalSub 𝑆)‘𝑅)‘(𝐴𝑋))) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})))
55 eqidd 2730 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
56 coeq1 5800 . . . . . 6 (𝑥 = ((𝐵m 1o) × {𝑋}) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5756adantl 481 . . . . 5 ((𝜑𝑥 = ((𝐵m 1o) × {𝑋})) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
5828, 40sseldd 3936 . . . . . . 7 (𝜑𝑋𝐵)
59 fconst6g 6713 . . . . . . 7 (𝑋𝐵 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
6058, 59syl 17 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵)
618fvexi 6836 . . . . . . . 8 𝐵 ∈ V
6261a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
63 ovex 7382 . . . . . . . 8 (𝐵m 1o) ∈ V
6463a1i 11 . . . . . . 7 (𝜑 → (𝐵m 1o) ∈ V)
6562, 64elmapd 8767 . . . . . 6 (𝜑 → (((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)) ↔ ((𝐵m 1o) × {𝑋}):(𝐵m 1o)⟶𝐵))
6660, 65mpbird 257 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ (𝐵m (𝐵m 1o)))
67 snex 5375 . . . . . . . 8 {𝑋} ∈ V
6863, 67xpex 7689 . . . . . . 7 ((𝐵m 1o) × {𝑋}) ∈ V
6968a1i 11 . . . . . 6 (𝜑 → ((𝐵m 1o) × {𝑋}) ∈ V)
7062mptexd 7160 . . . . . 6 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V)
71 coexg 7862 . . . . . 6 ((((𝐵m 1o) × {𝑋}) ∈ V ∧ (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7269, 70, 71syl2anc 584 . . . . 5 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V)
7355, 57, 66, 72fvmptd 6937 . . . 4 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
74 fconst6g 6713 . . . . . . 7 (𝑦𝐵 → (1o × {𝑦}):1o𝐵)
7574adantl 481 . . . . . 6 ((𝜑𝑦𝐵) → (1o × {𝑦}):1o𝐵)
7661, 1pm3.2i 470 . . . . . . . 8 (𝐵 ∈ V ∧ 1o ∈ On)
7776a1i 11 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐵 ∈ V ∧ 1o ∈ On))
78 elmapg 8766 . . . . . . 7 ((𝐵 ∈ V ∧ 1o ∈ On) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
7977, 78syl 17 . . . . . 6 ((𝜑𝑦𝐵) → ((1o × {𝑦}) ∈ (𝐵m 1o) ↔ (1o × {𝑦}):1o𝐵))
8075, 79mpbird 257 . . . . 5 ((𝜑𝑦𝐵) → (1o × {𝑦}) ∈ (𝐵m 1o))
81 eqidd 2730 . . . . 5 (𝜑 → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
82 fconstmpt 5681 . . . . . 6 ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋)
8382a1i 11 . . . . 5 (𝜑 → ((𝐵m 1o) × {𝑋}) = (𝑧 ∈ (𝐵m 1o) ↦ 𝑋))
84 eqidd 2730 . . . . 5 (𝑧 = (1o × {𝑦}) → 𝑋 = 𝑋)
8580, 81, 83, 84fmptco 7063 . . . 4 (𝜑 → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
8673, 85eqtrd 2764 . . 3 (𝜑 → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘((𝐵m 1o) × {𝑋})) = (𝑦𝐵𝑋))
8743, 54, 863eqtrd 2768 . 2 (𝜑 → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)) = (𝑦𝐵𝑋))
88 elpwg 4554 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
8927, 88mpbird 257 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ 𝒫 𝐵)
903, 89syl 17 . . . 4 (𝜑𝑅 ∈ 𝒫 𝐵)
91 evls1sca.q . . . . 5 𝑄 = (𝑆 evalSub1 𝑅)
92 eqid 2729 . . . . 5 (1o evalSub 𝑆) = (1o evalSub 𝑆)
9391, 92, 8evls1fval 22204 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
942, 90, 93syl2anc 584 . . 3 (𝜑𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅)))
9594fveq1d 6824 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑆)‘𝑅))‘(𝐴𝑋)))
96 fconstmpt 5681 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
9796a1i 11 . 2 (𝜑 → (𝐵 × {𝑋}) = (𝑦𝐵𝑋))
9887, 95, 973eqtr4d 2774 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  𝒫 cpw 4551  {csn 4577  cmpt 5173   × cxp 5617  ccom 5623  Oncon0 6307  wf 6478  cfv 6482  (class class class)co 7349  1oc1o 8381  m cmap 8753  Basecbs 17120  s cress 17141  Scalarcsca 17164  s cpws 17350  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  SubRingcsubrg 20454  LModclmod 20763  algSccascl 21759   mPoly cmpl 21813   evalSub ces 21977  Poly1cpl1 22059   evalSub1 ces1 22198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-psr1 22062  df-ply1 22064  df-evls1 22200
This theorem is referenced by:  evls1scasrng  22224  evls1scafv  22251  evls1maprnss  22263
  Copyright terms: Public domain W3C validator