Step | Hyp | Ref
| Expression |
1 | | 1on 8309 |
. . . . . 6
⊢
1o ∈ On |
2 | | evls1sca.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ CRing) |
3 | | evls1sca.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
4 | | eqid 2738 |
. . . . . . 7
⊢
((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(1o mPoly 𝑈) = (1o mPoly 𝑈) |
6 | | evls1sca.u |
. . . . . . 7
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
7 | | eqid 2738 |
. . . . . . 7
⊢ (𝑆 ↑s
(𝐵 ↑m
1o)) = (𝑆
↑s (𝐵 ↑m
1o)) |
8 | | evls1sca.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
9 | 4, 5, 6, 7, 8 | evlsrhm 21298 |
. . . . . 6
⊢
((1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m
1o)))) |
10 | 1, 2, 3, 9 | mp3an2i 1465 |
. . . . 5
⊢ (𝜑 → ((1o evalSub
𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m
1o)))) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(1o mPoly 𝑈)) = (Base‘(1o mPoly 𝑈)) |
12 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(𝑆
↑s (𝐵 ↑m 1o))) =
(Base‘(𝑆
↑s (𝐵 ↑m
1o))) |
13 | 11, 12 | rhmf 19970 |
. . . . 5
⊢
(((1o evalSub 𝑆)‘𝑅) ∈ ((1o mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m
1o))) → ((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆 ↑s
(𝐵 ↑m
1o)))) |
14 | 10, 13 | syl 17 |
. . . 4
⊢ (𝜑 → ((1o evalSub
𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆 ↑s
(𝐵 ↑m
1o)))) |
15 | | evls1sca.a |
. . . . . . 7
⊢ 𝐴 = (algSc‘𝑊) |
16 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
17 | 6 | subrgring 20027 |
. . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
18 | 3, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ Ring) |
19 | | evls1sca.w |
. . . . . . . . 9
⊢ 𝑊 = (Poly1‘𝑈) |
20 | 19 | ply1ring 21419 |
. . . . . . . 8
⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
21 | 18, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Ring) |
22 | 19 | ply1lmod 21423 |
. . . . . . . 8
⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
23 | 18, 22 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
26 | 15, 16, 21, 23, 24, 25 | asclf 21086 |
. . . . . 6
⊢ (𝜑 → 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
27 | 8 | subrgss 20025 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
28 | 3, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
29 | 6, 8 | ressbas2 16949 |
. . . . . . . . 9
⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘𝑈)) |
30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
31 | 19 | ply1sca 21424 |
. . . . . . . . . 10
⊢ (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊)) |
32 | 18, 31 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (Scalar‘𝑊)) |
33 | 32 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑈) =
(Base‘(Scalar‘𝑊))) |
34 | 30, 33 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (Base‘(Scalar‘𝑊))) |
35 | | eqid 2738 |
. . . . . . . . . 10
⊢
(PwSer1‘𝑈) = (PwSer1‘𝑈) |
36 | 19, 35, 25 | ply1bas 21366 |
. . . . . . . . 9
⊢
(Base‘𝑊) =
(Base‘(1o mPoly 𝑈)) |
37 | 36 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑊) = (Base‘(1o
mPoly 𝑈))) |
38 | 37 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (Base‘(1o
mPoly 𝑈)) =
(Base‘𝑊)) |
39 | 34, 38 | feq23d 6595 |
. . . . . 6
⊢ (𝜑 → (𝐴:𝑅⟶(Base‘(1o mPoly
𝑈)) ↔ 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))) |
40 | 26, 39 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐴:𝑅⟶(Base‘(1o mPoly
𝑈))) |
41 | | evls1sca.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑅) |
42 | 40, 41 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝐴‘𝑋) ∈ (Base‘(1o mPoly
𝑈))) |
43 | | fvco3 6867 |
. . . 4
⊢
((((1o evalSub 𝑆)‘𝑅):(Base‘(1o mPoly 𝑈))⟶(Base‘(𝑆 ↑s
(𝐵 ↑m
1o))) ∧ (𝐴‘𝑋) ∈ (Base‘(1o mPoly
𝑈))) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(((1o
evalSub 𝑆)‘𝑅)‘(𝐴‘𝑋)))) |
44 | 14, 42, 43 | syl2anc 584 |
. . 3
⊢ (𝜑 → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(((1o
evalSub 𝑆)‘𝑅)‘(𝐴‘𝑋)))) |
45 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 = (algSc‘𝑊)) |
46 | | eqid 2738 |
. . . . . . . . 9
⊢
(algSc‘𝑊) =
(algSc‘𝑊) |
47 | 19, 46 | ply1ascl 21429 |
. . . . . . . 8
⊢
(algSc‘𝑊) =
(algSc‘(1o mPoly 𝑈)) |
48 | 45, 47 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (algSc‘(1o mPoly 𝑈))) |
49 | 48 | fveq1d 6776 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑋) = ((algSc‘(1o mPoly 𝑈))‘𝑋)) |
50 | 49 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (((1o evalSub
𝑆)‘𝑅)‘(𝐴‘𝑋)) = (((1o evalSub 𝑆)‘𝑅)‘((algSc‘(1o mPoly
𝑈))‘𝑋))) |
51 | | eqid 2738 |
. . . . . 6
⊢
(algSc‘(1o mPoly 𝑈)) = (algSc‘(1o mPoly 𝑈)) |
52 | 1 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1o ∈
On) |
53 | 4, 5, 6, 8, 51, 52, 2, 3, 41 | evlssca 21299 |
. . . . 5
⊢ (𝜑 → (((1o evalSub
𝑆)‘𝑅)‘((algSc‘(1o mPoly
𝑈))‘𝑋)) = ((𝐵 ↑m 1o) ×
{𝑋})) |
54 | 50, 53 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (((1o evalSub
𝑆)‘𝑅)‘(𝐴‘𝑋)) = ((𝐵 ↑m 1o) ×
{𝑋})) |
55 | 54 | fveq2d 6778 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(((1o
evalSub 𝑆)‘𝑅)‘(𝐴‘𝑋))) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐵 ↑m 1o) ×
{𝑋}))) |
56 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))) |
57 | | coeq1 5766 |
. . . . . 6
⊢ (𝑥 = ((𝐵 ↑m 1o) ×
{𝑋}) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐵 ↑m 1o) ×
{𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
58 | 57 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = ((𝐵 ↑m 1o) ×
{𝑋})) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐵 ↑m 1o) ×
{𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
59 | 28, 41 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
60 | | fconst6g 6663 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → ((𝐵 ↑m 1o) ×
{𝑋}):(𝐵 ↑m
1o)⟶𝐵) |
61 | 59, 60 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐵 ↑m 1o) ×
{𝑋}):(𝐵 ↑m
1o)⟶𝐵) |
62 | 8 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
63 | 62 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
64 | | ovex 7308 |
. . . . . . . 8
⊢ (𝐵 ↑m
1o) ∈ V |
65 | 64 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ↑m 1o) ∈
V) |
66 | 63, 65 | elmapd 8629 |
. . . . . 6
⊢ (𝜑 → (((𝐵 ↑m 1o) ×
{𝑋}) ∈ (𝐵 ↑m (𝐵 ↑m
1o)) ↔ ((𝐵
↑m 1o) × {𝑋}):(𝐵 ↑m
1o)⟶𝐵)) |
67 | 61, 66 | mpbird 256 |
. . . . 5
⊢ (𝜑 → ((𝐵 ↑m 1o) ×
{𝑋}) ∈ (𝐵 ↑m (𝐵 ↑m
1o))) |
68 | | snex 5354 |
. . . . . . . 8
⊢ {𝑋} ∈ V |
69 | 64, 68 | xpex 7603 |
. . . . . . 7
⊢ ((𝐵 ↑m
1o) × {𝑋})
∈ V |
70 | 69 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝐵 ↑m 1o) ×
{𝑋}) ∈
V) |
71 | 63 | mptexd 7100 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) ∈ V) |
72 | | coexg 7776 |
. . . . . 6
⊢ ((((𝐵 ↑m
1o) × {𝑋})
∈ V ∧ (𝑦 ∈
𝐵 ↦ (1o
× {𝑦})) ∈ V)
→ (((𝐵
↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V) |
73 | 70, 71, 72 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (((𝐵 ↑m 1o) ×
{𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V) |
74 | 56, 58, 67, 73 | fvmptd 6882 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐵 ↑m 1o) ×
{𝑋})) = (((𝐵 ↑m
1o) × {𝑋})
∘ (𝑦 ∈ 𝐵 ↦ (1o ×
{𝑦})))) |
75 | | fconst6g 6663 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → (1o × {𝑦}):1o⟶𝐵) |
76 | 75 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1o × {𝑦}):1o⟶𝐵) |
77 | 62, 1 | pm3.2i 471 |
. . . . . . . 8
⊢ (𝐵 ∈ V ∧ 1o
∈ On) |
78 | 77 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐵 ∈ V ∧ 1o ∈
On)) |
79 | | elmapg 8628 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 1o
∈ On) → ((1o × {𝑦}) ∈ (𝐵 ↑m 1o) ↔
(1o × {𝑦}):1o⟶𝐵)) |
80 | 78, 79 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1o × {𝑦}) ∈ (𝐵 ↑m 1o) ↔
(1o × {𝑦}):1o⟶𝐵)) |
81 | 76, 80 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1o × {𝑦}) ∈ (𝐵 ↑m
1o)) |
82 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) |
83 | | fconstmpt 5649 |
. . . . . 6
⊢ ((𝐵 ↑m
1o) × {𝑋})
= (𝑧 ∈ (𝐵 ↑m
1o) ↦ 𝑋) |
84 | 83 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐵 ↑m 1o) ×
{𝑋}) = (𝑧 ∈ (𝐵 ↑m 1o) ↦
𝑋)) |
85 | | eqidd 2739 |
. . . . 5
⊢ (𝑧 = (1o × {𝑦}) → 𝑋 = 𝑋) |
86 | 81, 82, 84, 85 | fmptco 7001 |
. . . 4
⊢ (𝜑 → (((𝐵 ↑m 1o) ×
{𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
87 | 74, 86 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘((𝐵 ↑m 1o) ×
{𝑋})) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
88 | 44, 55, 87 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋)) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
89 | | elpwg 4536 |
. . . . . 6
⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
90 | 27, 89 | mpbird 256 |
. . . . 5
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ 𝒫 𝐵) |
91 | 3, 90 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝐵) |
92 | | evls1sca.q |
. . . . 5
⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
93 | | eqid 2738 |
. . . . 5
⊢
(1o evalSub 𝑆) = (1o evalSub 𝑆) |
94 | 92, 93, 8 | evls1fval 21485 |
. . . 4
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑆)‘𝑅))) |
95 | 2, 91, 94 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑆)‘𝑅))) |
96 | 95 | fveq1d 6776 |
. 2
⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋))) |
97 | | fconstmpt 5649 |
. . 3
⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) |
98 | 97 | a1i 11 |
. 2
⊢ (𝜑 → (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
99 | 88, 96, 98 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |