MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   GIF version

Theorem estrcco 18098
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
estrcco.x (𝜑𝑋𝑈)
estrcco.y (𝜑𝑌𝑈)
estrcco.z (𝜑𝑍𝑈)
estrcco.a 𝐴 = (Base‘𝑋)
estrcco.b 𝐵 = (Base‘𝑌)
estrcco.d 𝐷 = (Base‘𝑍)
estrcco.f (𝜑𝐹:𝐴𝐵)
estrcco.g (𝜑𝐺:𝐵𝐷)
Assertion
Ref Expression
estrcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem estrcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . . 4 (𝜑𝑈𝑉)
3 estrcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3estrccofval 18097 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
5 fveq2 6861 . . . . . . 7 (𝑧 = 𝑍 → (Base‘𝑧) = (Base‘𝑍))
65adantl 481 . . . . . 6 ((𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍) → (Base‘𝑧) = (Base‘𝑍))
76adantl 481 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘𝑧) = (Base‘𝑍))
8 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
98fveq2d 6865 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
10 estrcco.x . . . . . . . . 9 (𝜑𝑋𝑈)
11 estrcco.y . . . . . . . . 9 (𝜑𝑌𝑈)
12 op2ndg 7984 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1310, 11, 12syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
159, 14eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
1615fveq2d 6865 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(2nd𝑣)) = (Base‘𝑌))
177, 16oveq12d 7408 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘𝑧) ↑m (Base‘(2nd𝑣))) = ((Base‘𝑍) ↑m (Base‘𝑌)))
188fveq2d 6865 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
1918fveq2d 6865 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘(1st ‘⟨𝑋, 𝑌⟩)))
20 op1stg 7983 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2110, 11, 20syl2anc 584 . . . . . . . 8 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2221fveq2d 6865 . . . . . . 7 (𝜑 → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2322adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2419, 23eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘𝑋))
2516, 24oveq12d 7408 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) = ((Base‘𝑌) ↑m (Base‘𝑋)))
26 eqidd 2731 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2717, 25, 26mpoeq123dv 7467 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
2810, 11opelxpd 5680 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
29 estrcco.z . . 3 (𝜑𝑍𝑈)
30 ovex 7423 . . . . 5 ((Base‘𝑍) ↑m (Base‘𝑌)) ∈ V
31 ovex 7423 . . . . 5 ((Base‘𝑌) ↑m (Base‘𝑋)) ∈ V
3230, 31mpoex 8061 . . . 4 (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V
3332a1i 11 . . 3 (𝜑 → (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V)
344, 27, 28, 29, 33ovmpod 7544 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
35 simpl 482 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑔 = 𝐺)
36 simpr 484 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑓 = 𝐹)
3735, 36coeq12d 5831 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔𝑓) = (𝐺𝐹))
3837adantl 481 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
39 estrcco.g . . . 4 (𝜑𝐺:𝐵𝐷)
40 estrcco.b . . . . . . 7 𝐵 = (Base‘𝑌)
4140a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝑌))
4241eqcomd 2736 . . . . 5 (𝜑 → (Base‘𝑌) = 𝐵)
43 estrcco.d . . . . . . 7 𝐷 = (Base‘𝑍)
4443a1i 11 . . . . . 6 (𝜑𝐷 = (Base‘𝑍))
4544eqcomd 2736 . . . . 5 (𝜑 → (Base‘𝑍) = 𝐷)
4642, 45feq23d 6686 . . . 4 (𝜑 → (𝐺:(Base‘𝑌)⟶(Base‘𝑍) ↔ 𝐺:𝐵𝐷))
4739, 46mpbird 257 . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
48 fvexd 6876 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
49 fvexd 6876 . . . 4 (𝜑 → (Base‘𝑌) ∈ V)
5048, 49elmapd 8816 . . 3 (𝜑 → (𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ↔ 𝐺:(Base‘𝑌)⟶(Base‘𝑍)))
5147, 50mpbird 257 . 2 (𝜑𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
52 estrcco.f . . . 4 (𝜑𝐹:𝐴𝐵)
53 estrcco.a . . . . . . 7 𝐴 = (Base‘𝑋)
5453a1i 11 . . . . . 6 (𝜑𝐴 = (Base‘𝑋))
5554eqcomd 2736 . . . . 5 (𝜑 → (Base‘𝑋) = 𝐴)
5655, 42feq23d 6686 . . . 4 (𝜑 → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝐹:𝐴𝐵))
5752, 56mpbird 257 . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
58 fvexd 6876 . . . 4 (𝜑 → (Base‘𝑋) ∈ V)
5949, 58elmapd 8816 . . 3 (𝜑 → (𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
6057, 59mpbird 257 . 2 (𝜑𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
61 coexg 7908 . . 3 ((𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐺𝐹) ∈ V)
6251, 60, 61syl2anc 584 . 2 (𝜑 → (𝐺𝐹) ∈ V)
6334, 38, 51, 60, 62ovmpod 7544 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   × cxp 5639  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  m cmap 8802  Basecbs 17186  compcco 17239  ExtStrCatcestrc 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-estrc 18091
This theorem is referenced by:  estrccatid  18100  funcestrcsetclem9  18116  funcsetcestrclem9  18131  rngcco  20543  rnghmsubcsetclem2  20548  ringcco  20572  rhmsubcsetclem2  20577
  Copyright terms: Public domain W3C validator