Step | Hyp | Ref
| Expression |
1 | | estrcbas.c |
. . . 4
β’ πΆ = (ExtStrCatβπ) |
2 | | estrcbas.u |
. . . 4
β’ (π β π β π) |
3 | | estrcco.o |
. . . 4
β’ Β· =
(compβπΆ) |
4 | 1, 2, 3 | estrccofval 18076 |
. . 3
β’ (π β Β· = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
5 | | fveq2 6888 |
. . . . . . 7
β’ (π§ = π β (Baseβπ§) = (Baseβπ)) |
6 | 5 | adantl 482 |
. . . . . 6
β’ ((π£ = β¨π, πβ© β§ π§ = π) β (Baseβπ§) = (Baseβπ)) |
7 | 6 | adantl 482 |
. . . . 5
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (Baseβπ§) = (Baseβπ)) |
8 | | simprl 769 |
. . . . . . . 8
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β π£ = β¨π, πβ©) |
9 | 8 | fveq2d 6892 |
. . . . . . 7
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (2nd βπ£) = (2nd
ββ¨π, πβ©)) |
10 | | estrcco.x |
. . . . . . . . 9
β’ (π β π β π) |
11 | | estrcco.y |
. . . . . . . . 9
β’ (π β π β π) |
12 | | op2ndg 7984 |
. . . . . . . . 9
β’ ((π β π β§ π β π) β (2nd ββ¨π, πβ©) = π) |
13 | 10, 11, 12 | syl2anc 584 |
. . . . . . . 8
β’ (π β (2nd
ββ¨π, πβ©) = π) |
14 | 13 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (2nd ββ¨π, πβ©) = π) |
15 | 9, 14 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (2nd βπ£) = π) |
16 | 15 | fveq2d 6892 |
. . . . 5
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (Baseβ(2nd
βπ£)) =
(Baseβπ)) |
17 | 7, 16 | oveq12d 7423 |
. . . 4
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β ((Baseβπ§) βm
(Baseβ(2nd βπ£))) = ((Baseβπ) βm (Baseβπ))) |
18 | 8 | fveq2d 6892 |
. . . . . . 7
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (1st βπ£) = (1st
ββ¨π, πβ©)) |
19 | 18 | fveq2d 6892 |
. . . . . 6
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (Baseβ(1st
βπ£)) =
(Baseβ(1st ββ¨π, πβ©))) |
20 | | op1stg 7983 |
. . . . . . . . 9
β’ ((π β π β§ π β π) β (1st ββ¨π, πβ©) = π) |
21 | 10, 11, 20 | syl2anc 584 |
. . . . . . . 8
β’ (π β (1st
ββ¨π, πβ©) = π) |
22 | 21 | fveq2d 6892 |
. . . . . . 7
β’ (π β
(Baseβ(1st ββ¨π, πβ©)) = (Baseβπ)) |
23 | 22 | adantr 481 |
. . . . . 6
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (Baseβ(1st
ββ¨π, πβ©)) = (Baseβπ)) |
24 | 19, 23 | eqtrd 2772 |
. . . . 5
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (Baseβ(1st
βπ£)) =
(Baseβπ)) |
25 | 16, 24 | oveq12d 7423 |
. . . 4
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) = ((Baseβπ) βm (Baseβπ))) |
26 | | eqidd 2733 |
. . . 4
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (π β π) = (π β π)) |
27 | 17, 25, 26 | mpoeq123dv 7480 |
. . 3
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)) = (π β ((Baseβπ) βm (Baseβπ)), π β ((Baseβπ) βm (Baseβπ)) β¦ (π β π))) |
28 | 10, 11 | opelxpd 5713 |
. . 3
β’ (π β β¨π, πβ© β (π Γ π)) |
29 | | estrcco.z |
. . 3
β’ (π β π β π) |
30 | | ovex 7438 |
. . . . 5
β’
((Baseβπ)
βm (Baseβπ)) β V |
31 | | ovex 7438 |
. . . . 5
β’
((Baseβπ)
βm (Baseβπ)) β V |
32 | 30, 31 | mpoex 8062 |
. . . 4
β’ (π β ((Baseβπ) βm
(Baseβπ)), π β ((Baseβπ) βm
(Baseβπ)) β¦
(π β π)) β V |
33 | 32 | a1i 11 |
. . 3
β’ (π β (π β ((Baseβπ) βm (Baseβπ)), π β ((Baseβπ) βm (Baseβπ)) β¦ (π β π)) β V) |
34 | 4, 27, 28, 29, 33 | ovmpod 7556 |
. 2
β’ (π β (β¨π, πβ© Β· π) = (π β ((Baseβπ) βm (Baseβπ)), π β ((Baseβπ) βm (Baseβπ)) β¦ (π β π))) |
35 | | simpl 483 |
. . . 4
β’ ((π = πΊ β§ π = πΉ) β π = πΊ) |
36 | | simpr 485 |
. . . 4
β’ ((π = πΊ β§ π = πΉ) β π = πΉ) |
37 | 35, 36 | coeq12d 5862 |
. . 3
β’ ((π = πΊ β§ π = πΉ) β (π β π) = (πΊ β πΉ)) |
38 | 37 | adantl 482 |
. 2
β’ ((π β§ (π = πΊ β§ π = πΉ)) β (π β π) = (πΊ β πΉ)) |
39 | | estrcco.g |
. . . 4
β’ (π β πΊ:π΅βΆπ·) |
40 | | estrcco.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
41 | 40 | a1i 11 |
. . . . . 6
β’ (π β π΅ = (Baseβπ)) |
42 | 41 | eqcomd 2738 |
. . . . 5
β’ (π β (Baseβπ) = π΅) |
43 | | estrcco.d |
. . . . . . 7
β’ π· = (Baseβπ) |
44 | 43 | a1i 11 |
. . . . . 6
β’ (π β π· = (Baseβπ)) |
45 | 44 | eqcomd 2738 |
. . . . 5
β’ (π β (Baseβπ) = π·) |
46 | 42, 45 | feq23d 6709 |
. . . 4
β’ (π β (πΊ:(Baseβπ)βΆ(Baseβπ) β πΊ:π΅βΆπ·)) |
47 | 39, 46 | mpbird 256 |
. . 3
β’ (π β πΊ:(Baseβπ)βΆ(Baseβπ)) |
48 | | fvexd 6903 |
. . . 4
β’ (π β (Baseβπ) β V) |
49 | | fvexd 6903 |
. . . 4
β’ (π β (Baseβπ) β V) |
50 | 48, 49 | elmapd 8830 |
. . 3
β’ (π β (πΊ β ((Baseβπ) βm (Baseβπ)) β πΊ:(Baseβπ)βΆ(Baseβπ))) |
51 | 47, 50 | mpbird 256 |
. 2
β’ (π β πΊ β ((Baseβπ) βm (Baseβπ))) |
52 | | estrcco.f |
. . . 4
β’ (π β πΉ:π΄βΆπ΅) |
53 | | estrcco.a |
. . . . . . 7
β’ π΄ = (Baseβπ) |
54 | 53 | a1i 11 |
. . . . . 6
β’ (π β π΄ = (Baseβπ)) |
55 | 54 | eqcomd 2738 |
. . . . 5
β’ (π β (Baseβπ) = π΄) |
56 | 55, 42 | feq23d 6709 |
. . . 4
β’ (π β (πΉ:(Baseβπ)βΆ(Baseβπ) β πΉ:π΄βΆπ΅)) |
57 | 52, 56 | mpbird 256 |
. . 3
β’ (π β πΉ:(Baseβπ)βΆ(Baseβπ)) |
58 | | fvexd 6903 |
. . . 4
β’ (π β (Baseβπ) β V) |
59 | 49, 58 | elmapd 8830 |
. . 3
β’ (π β (πΉ β ((Baseβπ) βm (Baseβπ)) β πΉ:(Baseβπ)βΆ(Baseβπ))) |
60 | 57, 59 | mpbird 256 |
. 2
β’ (π β πΉ β ((Baseβπ) βm (Baseβπ))) |
61 | | coexg 7916 |
. . 3
β’ ((πΊ β ((Baseβπ) βm
(Baseβπ)) β§ πΉ β ((Baseβπ) βm
(Baseβπ))) β
(πΊ β πΉ) β V) |
62 | 51, 60, 61 | syl2anc 584 |
. 2
β’ (π β (πΊ β πΉ) β V) |
63 | 34, 38, 51, 60, 62 | ovmpod 7556 |
1
β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) = (πΊ β πΉ)) |