MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   GIF version

Theorem estrcco 17762
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
estrcco.x (𝜑𝑋𝑈)
estrcco.y (𝜑𝑌𝑈)
estrcco.z (𝜑𝑍𝑈)
estrcco.a 𝐴 = (Base‘𝑋)
estrcco.b 𝐵 = (Base‘𝑌)
estrcco.d 𝐷 = (Base‘𝑍)
estrcco.f (𝜑𝐹:𝐴𝐵)
estrcco.g (𝜑𝐺:𝐵𝐷)
Assertion
Ref Expression
estrcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem estrcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . . 4 (𝜑𝑈𝑉)
3 estrcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3estrccofval 17761 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
5 fveq2 6756 . . . . . . 7 (𝑧 = 𝑍 → (Base‘𝑧) = (Base‘𝑍))
65adantl 481 . . . . . 6 ((𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍) → (Base‘𝑧) = (Base‘𝑍))
76adantl 481 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘𝑧) = (Base‘𝑍))
8 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
98fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
10 estrcco.x . . . . . . . . 9 (𝜑𝑋𝑈)
11 estrcco.y . . . . . . . . 9 (𝜑𝑌𝑈)
12 op2ndg 7817 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1310, 11, 12syl2anc 583 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
159, 14eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
1615fveq2d 6760 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(2nd𝑣)) = (Base‘𝑌))
177, 16oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘𝑧) ↑m (Base‘(2nd𝑣))) = ((Base‘𝑍) ↑m (Base‘𝑌)))
188fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
1918fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘(1st ‘⟨𝑋, 𝑌⟩)))
20 op1stg 7816 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2110, 11, 20syl2anc 583 . . . . . . . 8 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2221fveq2d 6760 . . . . . . 7 (𝜑 → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2322adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2419, 23eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘𝑋))
2516, 24oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) = ((Base‘𝑌) ↑m (Base‘𝑋)))
26 eqidd 2739 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2717, 25, 26mpoeq123dv 7328 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
2810, 11opelxpd 5618 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
29 estrcco.z . . 3 (𝜑𝑍𝑈)
30 ovex 7288 . . . . 5 ((Base‘𝑍) ↑m (Base‘𝑌)) ∈ V
31 ovex 7288 . . . . 5 ((Base‘𝑌) ↑m (Base‘𝑋)) ∈ V
3230, 31mpoex 7893 . . . 4 (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V
3332a1i 11 . . 3 (𝜑 → (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V)
344, 27, 28, 29, 33ovmpod 7403 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
35 simpl 482 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑔 = 𝐺)
36 simpr 484 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑓 = 𝐹)
3735, 36coeq12d 5762 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔𝑓) = (𝐺𝐹))
3837adantl 481 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
39 estrcco.g . . . 4 (𝜑𝐺:𝐵𝐷)
40 estrcco.b . . . . . . 7 𝐵 = (Base‘𝑌)
4140a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝑌))
4241eqcomd 2744 . . . . 5 (𝜑 → (Base‘𝑌) = 𝐵)
43 estrcco.d . . . . . . 7 𝐷 = (Base‘𝑍)
4443a1i 11 . . . . . 6 (𝜑𝐷 = (Base‘𝑍))
4544eqcomd 2744 . . . . 5 (𝜑 → (Base‘𝑍) = 𝐷)
4642, 45feq23d 6579 . . . 4 (𝜑 → (𝐺:(Base‘𝑌)⟶(Base‘𝑍) ↔ 𝐺:𝐵𝐷))
4739, 46mpbird 256 . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
48 fvexd 6771 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
49 fvexd 6771 . . . 4 (𝜑 → (Base‘𝑌) ∈ V)
5048, 49elmapd 8587 . . 3 (𝜑 → (𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ↔ 𝐺:(Base‘𝑌)⟶(Base‘𝑍)))
5147, 50mpbird 256 . 2 (𝜑𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
52 estrcco.f . . . 4 (𝜑𝐹:𝐴𝐵)
53 estrcco.a . . . . . . 7 𝐴 = (Base‘𝑋)
5453a1i 11 . . . . . 6 (𝜑𝐴 = (Base‘𝑋))
5554eqcomd 2744 . . . . 5 (𝜑 → (Base‘𝑋) = 𝐴)
5655, 42feq23d 6579 . . . 4 (𝜑 → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝐹:𝐴𝐵))
5752, 56mpbird 256 . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
58 fvexd 6771 . . . 4 (𝜑 → (Base‘𝑋) ∈ V)
5949, 58elmapd 8587 . . 3 (𝜑 → (𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
6057, 59mpbird 256 . 2 (𝜑𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
61 coexg 7750 . . 3 ((𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐺𝐹) ∈ V)
6251, 60, 61syl2anc 583 . 2 (𝜑 → (𝐺𝐹) ∈ V)
6334, 38, 51, 60, 62ovmpod 7403 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Basecbs 16840  compcco 16900  ExtStrCatcestrc 17754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-estrc 17755
This theorem is referenced by:  estrccatid  17764  funcestrcsetclem9  17781  funcsetcestrclem9  17796  rngcco  45417  rnghmsubcsetclem2  45422  ringcco  45463  rhmsubcsetclem2  45468
  Copyright terms: Public domain W3C validator