MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   GIF version

Theorem estrcco 18077
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐢 = (ExtStrCatβ€˜π‘ˆ)
estrcbas.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
estrcco.o Β· = (compβ€˜πΆ)
estrcco.x (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
estrcco.y (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
estrcco.z (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
estrcco.a 𝐴 = (Baseβ€˜π‘‹)
estrcco.b 𝐡 = (Baseβ€˜π‘Œ)
estrcco.d 𝐷 = (Baseβ€˜π‘)
estrcco.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
estrcco.g (πœ‘ β†’ 𝐺:𝐡⟢𝐷)
Assertion
Ref Expression
estrcco (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍)𝐹) = (𝐺 ∘ 𝐹))

Proof of Theorem estrcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4 𝐢 = (ExtStrCatβ€˜π‘ˆ)
2 estrcbas.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
3 estrcco.o . . . 4 Β· = (compβ€˜πΆ)
41, 2, 3estrccofval 18076 . . 3 (πœ‘ β†’ Β· = (𝑣 ∈ (π‘ˆ Γ— π‘ˆ), 𝑧 ∈ π‘ˆ ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓))))
5 fveq2 6888 . . . . . . 7 (𝑧 = 𝑍 β†’ (Baseβ€˜π‘§) = (Baseβ€˜π‘))
65adantl 482 . . . . . 6 ((𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍) β†’ (Baseβ€˜π‘§) = (Baseβ€˜π‘))
76adantl 482 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (Baseβ€˜π‘§) = (Baseβ€˜π‘))
8 simprl 769 . . . . . . . 8 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑣 = βŸ¨π‘‹, π‘ŒβŸ©)
98fveq2d 6892 . . . . . . 7 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘£) = (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©))
10 estrcco.x . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
11 estrcco.y . . . . . . . . 9 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
12 op2ndg 7984 . . . . . . . . 9 ((𝑋 ∈ π‘ˆ ∧ π‘Œ ∈ π‘ˆ) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
1310, 11, 12syl2anc 584 . . . . . . . 8 (πœ‘ β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
1413adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
159, 14eqtrd 2772 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘£) = π‘Œ)
1615fveq2d 6892 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (Baseβ€˜(2nd β€˜π‘£)) = (Baseβ€˜π‘Œ))
177, 16oveq12d 7423 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))) = ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)))
188fveq2d 6892 . . . . . . 7 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘£) = (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©))
1918fveq2d 6892 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (Baseβ€˜(1st β€˜π‘£)) = (Baseβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)))
20 op1stg 7983 . . . . . . . . 9 ((𝑋 ∈ π‘ˆ ∧ π‘Œ ∈ π‘ˆ) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
2110, 11, 20syl2anc 584 . . . . . . . 8 (πœ‘ β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
2221fveq2d 6892 . . . . . . 7 (πœ‘ β†’ (Baseβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (Baseβ€˜π‘‹))
2322adantr 481 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (Baseβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (Baseβ€˜π‘‹))
2419, 23eqtrd 2772 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (Baseβ€˜(1st β€˜π‘£)) = (Baseβ€˜π‘‹))
2516, 24oveq12d 7423 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) = ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
26 eqidd 2733 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓))
2717, 25, 26mpoeq123dv 7480 . . 3 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)), 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↦ (𝑔 ∘ 𝑓)))
2810, 11opelxpd 5713 . . 3 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (π‘ˆ Γ— π‘ˆ))
29 estrcco.z . . 3 (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
30 ovex 7438 . . . . 5 ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)) ∈ V
31 ovex 7438 . . . . 5 ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ∈ V
3230, 31mpoex 8062 . . . 4 (𝑔 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)), 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↦ (𝑔 ∘ 𝑓)) ∈ V
3332a1i 11 . . 3 (πœ‘ β†’ (𝑔 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)), 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↦ (𝑔 ∘ 𝑓)) ∈ V)
344, 27, 28, 29, 33ovmpod 7556 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍) = (𝑔 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)), 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↦ (𝑔 ∘ 𝑓)))
35 simpl 483 . . . 4 ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) β†’ 𝑔 = 𝐺)
36 simpr 485 . . . 4 ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) β†’ 𝑓 = 𝐹)
3735, 36coeq12d 5862 . . 3 ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) β†’ (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹))
3837adantl 482 . 2 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹))
39 estrcco.g . . . 4 (πœ‘ β†’ 𝐺:𝐡⟢𝐷)
40 estrcco.b . . . . . . 7 𝐡 = (Baseβ€˜π‘Œ)
4140a1i 11 . . . . . 6 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘Œ))
4241eqcomd 2738 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘Œ) = 𝐡)
43 estrcco.d . . . . . . 7 𝐷 = (Baseβ€˜π‘)
4443a1i 11 . . . . . 6 (πœ‘ β†’ 𝐷 = (Baseβ€˜π‘))
4544eqcomd 2738 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘) = 𝐷)
4642, 45feq23d 6709 . . . 4 (πœ‘ β†’ (𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘) ↔ 𝐺:𝐡⟢𝐷))
4739, 46mpbird 256 . . 3 (πœ‘ β†’ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘))
48 fvexd 6903 . . . 4 (πœ‘ β†’ (Baseβ€˜π‘) ∈ V)
49 fvexd 6903 . . . 4 (πœ‘ β†’ (Baseβ€˜π‘Œ) ∈ V)
5048, 49elmapd 8830 . . 3 (πœ‘ β†’ (𝐺 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)) ↔ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘)))
5147, 50mpbird 256 . 2 (πœ‘ β†’ 𝐺 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)))
52 estrcco.f . . . 4 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
53 estrcco.a . . . . . . 7 𝐴 = (Baseβ€˜π‘‹)
5453a1i 11 . . . . . 6 (πœ‘ β†’ 𝐴 = (Baseβ€˜π‘‹))
5554eqcomd 2738 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘‹) = 𝐴)
5655, 42feq23d 6709 . . . 4 (πœ‘ β†’ (𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ↔ 𝐹:𝐴⟢𝐡))
5752, 56mpbird 256 . . 3 (πœ‘ β†’ 𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ))
58 fvexd 6903 . . . 4 (πœ‘ β†’ (Baseβ€˜π‘‹) ∈ V)
5949, 58elmapd 8830 . . 3 (πœ‘ β†’ (𝐹 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↔ 𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ)))
6057, 59mpbird 256 . 2 (πœ‘ β†’ 𝐹 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
61 coexg 7916 . . 3 ((𝐺 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Œ)) ∧ 𝐹 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))) β†’ (𝐺 ∘ 𝐹) ∈ V)
6251, 60, 61syl2anc 584 . 2 (πœ‘ β†’ (𝐺 ∘ 𝐹) ∈ V)
6334, 38, 51, 60, 62ovmpod 7556 1 (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍)𝐹) = (𝐺 ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4633   Γ— cxp 5673   ∘ ccom 5679  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1st c1st 7969  2nd c2nd 7970   ↑m cmap 8816  Basecbs 17140  compcco 17205  ExtStrCatcestrc 18069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-estrc 18070
This theorem is referenced by:  estrccatid  18079  funcestrcsetclem9  18096  funcsetcestrclem9  18111  rngcco  46822  rnghmsubcsetclem2  46827  ringcco  46868  rhmsubcsetclem2  46873
  Copyright terms: Public domain W3C validator