MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   GIF version

Theorem estrcco 18198
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
estrcco.x (𝜑𝑋𝑈)
estrcco.y (𝜑𝑌𝑈)
estrcco.z (𝜑𝑍𝑈)
estrcco.a 𝐴 = (Base‘𝑋)
estrcco.b 𝐵 = (Base‘𝑌)
estrcco.d 𝐷 = (Base‘𝑍)
estrcco.f (𝜑𝐹:𝐴𝐵)
estrcco.g (𝜑𝐺:𝐵𝐷)
Assertion
Ref Expression
estrcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem estrcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . . 4 (𝜑𝑈𝑉)
3 estrcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3estrccofval 18197 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
5 fveq2 6920 . . . . . . 7 (𝑧 = 𝑍 → (Base‘𝑧) = (Base‘𝑍))
65adantl 481 . . . . . 6 ((𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍) → (Base‘𝑧) = (Base‘𝑍))
76adantl 481 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘𝑧) = (Base‘𝑍))
8 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
98fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
10 estrcco.x . . . . . . . . 9 (𝜑𝑋𝑈)
11 estrcco.y . . . . . . . . 9 (𝜑𝑌𝑈)
12 op2ndg 8043 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1310, 11, 12syl2anc 583 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
159, 14eqtrd 2780 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
1615fveq2d 6924 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(2nd𝑣)) = (Base‘𝑌))
177, 16oveq12d 7466 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘𝑧) ↑m (Base‘(2nd𝑣))) = ((Base‘𝑍) ↑m (Base‘𝑌)))
188fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
1918fveq2d 6924 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘(1st ‘⟨𝑋, 𝑌⟩)))
20 op1stg 8042 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2110, 11, 20syl2anc 583 . . . . . . . 8 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2221fveq2d 6924 . . . . . . 7 (𝜑 → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2322adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2419, 23eqtrd 2780 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘𝑋))
2516, 24oveq12d 7466 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) = ((Base‘𝑌) ↑m (Base‘𝑋)))
26 eqidd 2741 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2717, 25, 26mpoeq123dv 7525 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
2810, 11opelxpd 5739 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
29 estrcco.z . . 3 (𝜑𝑍𝑈)
30 ovex 7481 . . . . 5 ((Base‘𝑍) ↑m (Base‘𝑌)) ∈ V
31 ovex 7481 . . . . 5 ((Base‘𝑌) ↑m (Base‘𝑋)) ∈ V
3230, 31mpoex 8120 . . . 4 (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V
3332a1i 11 . . 3 (𝜑 → (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V)
344, 27, 28, 29, 33ovmpod 7602 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
35 simpl 482 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑔 = 𝐺)
36 simpr 484 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑓 = 𝐹)
3735, 36coeq12d 5889 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔𝑓) = (𝐺𝐹))
3837adantl 481 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
39 estrcco.g . . . 4 (𝜑𝐺:𝐵𝐷)
40 estrcco.b . . . . . . 7 𝐵 = (Base‘𝑌)
4140a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝑌))
4241eqcomd 2746 . . . . 5 (𝜑 → (Base‘𝑌) = 𝐵)
43 estrcco.d . . . . . . 7 𝐷 = (Base‘𝑍)
4443a1i 11 . . . . . 6 (𝜑𝐷 = (Base‘𝑍))
4544eqcomd 2746 . . . . 5 (𝜑 → (Base‘𝑍) = 𝐷)
4642, 45feq23d 6742 . . . 4 (𝜑 → (𝐺:(Base‘𝑌)⟶(Base‘𝑍) ↔ 𝐺:𝐵𝐷))
4739, 46mpbird 257 . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
48 fvexd 6935 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
49 fvexd 6935 . . . 4 (𝜑 → (Base‘𝑌) ∈ V)
5048, 49elmapd 8898 . . 3 (𝜑 → (𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ↔ 𝐺:(Base‘𝑌)⟶(Base‘𝑍)))
5147, 50mpbird 257 . 2 (𝜑𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
52 estrcco.f . . . 4 (𝜑𝐹:𝐴𝐵)
53 estrcco.a . . . . . . 7 𝐴 = (Base‘𝑋)
5453a1i 11 . . . . . 6 (𝜑𝐴 = (Base‘𝑋))
5554eqcomd 2746 . . . . 5 (𝜑 → (Base‘𝑋) = 𝐴)
5655, 42feq23d 6742 . . . 4 (𝜑 → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝐹:𝐴𝐵))
5752, 56mpbird 257 . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
58 fvexd 6935 . . . 4 (𝜑 → (Base‘𝑋) ∈ V)
5949, 58elmapd 8898 . . 3 (𝜑 → (𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
6057, 59mpbird 257 . 2 (𝜑𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
61 coexg 7969 . . 3 ((𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐺𝐹) ∈ V)
6251, 60, 61syl2anc 583 . 2 (𝜑 → (𝐺𝐹) ∈ V)
6334, 38, 51, 60, 62ovmpod 7602 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  m cmap 8884  Basecbs 17258  compcco 17323  ExtStrCatcestrc 18190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-estrc 18191
This theorem is referenced by:  estrccatid  18200  funcestrcsetclem9  18217  funcsetcestrclem9  18232  rngcco  20649  rnghmsubcsetclem2  20654  ringcco  20678  rhmsubcsetclem2  20683
  Copyright terms: Public domain W3C validator