MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   GIF version

Theorem estrcco 18071
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
estrcco.x (𝜑𝑋𝑈)
estrcco.y (𝜑𝑌𝑈)
estrcco.z (𝜑𝑍𝑈)
estrcco.a 𝐴 = (Base‘𝑋)
estrcco.b 𝐵 = (Base‘𝑌)
estrcco.d 𝐷 = (Base‘𝑍)
estrcco.f (𝜑𝐹:𝐴𝐵)
estrcco.g (𝜑𝐺:𝐵𝐷)
Assertion
Ref Expression
estrcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem estrcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . . 4 (𝜑𝑈𝑉)
3 estrcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3estrccofval 18070 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
5 fveq2 6840 . . . . . . 7 (𝑧 = 𝑍 → (Base‘𝑧) = (Base‘𝑍))
65adantl 481 . . . . . 6 ((𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍) → (Base‘𝑧) = (Base‘𝑍))
76adantl 481 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘𝑧) = (Base‘𝑍))
8 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
98fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
10 estrcco.x . . . . . . . . 9 (𝜑𝑋𝑈)
11 estrcco.y . . . . . . . . 9 (𝜑𝑌𝑈)
12 op2ndg 7960 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1310, 11, 12syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
159, 14eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
1615fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(2nd𝑣)) = (Base‘𝑌))
177, 16oveq12d 7387 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘𝑧) ↑m (Base‘(2nd𝑣))) = ((Base‘𝑍) ↑m (Base‘𝑌)))
188fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
1918fveq2d 6844 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘(1st ‘⟨𝑋, 𝑌⟩)))
20 op1stg 7959 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2110, 11, 20syl2anc 584 . . . . . . . 8 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2221fveq2d 6844 . . . . . . 7 (𝜑 → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2322adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2419, 23eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘𝑋))
2516, 24oveq12d 7387 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) = ((Base‘𝑌) ↑m (Base‘𝑋)))
26 eqidd 2730 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2717, 25, 26mpoeq123dv 7444 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
2810, 11opelxpd 5670 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
29 estrcco.z . . 3 (𝜑𝑍𝑈)
30 ovex 7402 . . . . 5 ((Base‘𝑍) ↑m (Base‘𝑌)) ∈ V
31 ovex 7402 . . . . 5 ((Base‘𝑌) ↑m (Base‘𝑋)) ∈ V
3230, 31mpoex 8037 . . . 4 (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V
3332a1i 11 . . 3 (𝜑 → (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V)
344, 27, 28, 29, 33ovmpod 7521 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↦ (𝑔𝑓)))
35 simpl 482 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑔 = 𝐺)
36 simpr 484 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑓 = 𝐹)
3735, 36coeq12d 5818 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔𝑓) = (𝐺𝐹))
3837adantl 481 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
39 estrcco.g . . . 4 (𝜑𝐺:𝐵𝐷)
40 estrcco.b . . . . . . 7 𝐵 = (Base‘𝑌)
4140a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝑌))
4241eqcomd 2735 . . . . 5 (𝜑 → (Base‘𝑌) = 𝐵)
43 estrcco.d . . . . . . 7 𝐷 = (Base‘𝑍)
4443a1i 11 . . . . . 6 (𝜑𝐷 = (Base‘𝑍))
4544eqcomd 2735 . . . . 5 (𝜑 → (Base‘𝑍) = 𝐷)
4642, 45feq23d 6665 . . . 4 (𝜑 → (𝐺:(Base‘𝑌)⟶(Base‘𝑍) ↔ 𝐺:𝐵𝐷))
4739, 46mpbird 257 . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
48 fvexd 6855 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
49 fvexd 6855 . . . 4 (𝜑 → (Base‘𝑌) ∈ V)
5048, 49elmapd 8790 . . 3 (𝜑 → (𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ↔ 𝐺:(Base‘𝑌)⟶(Base‘𝑍)))
5147, 50mpbird 257 . 2 (𝜑𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
52 estrcco.f . . . 4 (𝜑𝐹:𝐴𝐵)
53 estrcco.a . . . . . . 7 𝐴 = (Base‘𝑋)
5453a1i 11 . . . . . 6 (𝜑𝐴 = (Base‘𝑋))
5554eqcomd 2735 . . . . 5 (𝜑 → (Base‘𝑋) = 𝐴)
5655, 42feq23d 6665 . . . 4 (𝜑 → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝐹:𝐴𝐵))
5752, 56mpbird 257 . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
58 fvexd 6855 . . . 4 (𝜑 → (Base‘𝑋) ∈ V)
5949, 58elmapd 8790 . . 3 (𝜑 → (𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
6057, 59mpbird 257 . 2 (𝜑𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
61 coexg 7885 . . 3 ((𝐺 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐹 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐺𝐹) ∈ V)
6251, 60, 61syl2anc 584 . 2 (𝜑 → (𝐺𝐹) ∈ V)
6334, 38, 51, 60, 62ovmpod 7521 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   × cxp 5629  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  m cmap 8776  Basecbs 17155  compcco 17208  ExtStrCatcestrc 18063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-estrc 18064
This theorem is referenced by:  estrccatid  18073  funcestrcsetclem9  18089  funcsetcestrclem9  18104  rngcco  20547  rnghmsubcsetclem2  20552  ringcco  20576  rhmsubcsetclem2  20581
  Copyright terms: Public domain W3C validator