![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flfval | Structured version Visualization version GIF version |
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flfval | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 21056 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
2 | filtop 21984 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
3 | elmapg 8106 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿) → (𝐹 ∈ (𝑋 ↑𝑚 𝑌) ↔ 𝐹:𝑌⟶𝑋)) | |
4 | 1, 2, 3 | syl2an 590 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋 ↑𝑚 𝑌) ↔ 𝐹:𝑌⟶𝑋)) |
5 | 4 | biimpar 470 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ (𝑋 ↑𝑚 𝑌)) |
6 | flffval 22118 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))) | |
7 | 6 | fveq1d 6411 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = ((𝑓 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹)) |
8 | oveq2 6884 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑋 FilMap 𝑓) = (𝑋 FilMap 𝐹)) | |
9 | 8 | fveq1d 6411 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑋 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿)) |
10 | 9 | oveq2d 6892 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
11 | eqid 2797 | . . . . 5 ⊢ (𝑓 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) | |
12 | ovex 6908 | . . . . 5 ⊢ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V | |
13 | 10, 11, 12 | fvmpt 6505 | . . . 4 ⊢ (𝐹 ∈ (𝑋 ↑𝑚 𝑌) → ((𝑓 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
14 | 7, 13 | sylan9eq 2851 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹 ∈ (𝑋 ↑𝑚 𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
15 | 5, 14 | syldan 586 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
16 | 15 | 3impa 1137 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4920 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↑𝑚 cmap 8093 TopOnctopon 21040 Filcfil 21974 FilMap cfm 22062 fLim cflim 22063 fLimf cflf 22064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-map 8095 df-fbas 20062 df-top 21024 df-topon 21041 df-fil 21975 df-flf 22069 |
This theorem is referenced by: flfnei 22120 isflf 22122 hausflf 22126 flfcnp 22133 flfssfcf 22167 uffcfflf 22168 cnpfcf 22170 cnextcn 22196 tsmscls 22266 cnextucn 22432 cmetcaulem 23411 fmcncfil 30485 |
Copyright terms: Public domain | W3C validator |