MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfval Structured version   Visualization version   GIF version

Theorem flfval 23169
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))

Proof of Theorem flfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 toponmax 22103 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2 filtop 23034 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
3 elmapg 8648 . . . . 5 ((𝑋𝐽𝑌𝐿) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
41, 2, 3syl2an 595 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
54biimpar 477 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ (𝑋m 𝑌))
6 flffval 23168 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
76fveq1d 6794 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = ((𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹))
8 oveq2 7303 . . . . . . 7 (𝑓 = 𝐹 → (𝑋 FilMap 𝑓) = (𝑋 FilMap 𝐹))
98fveq1d 6794 . . . . . 6 (𝑓 = 𝐹 → ((𝑋 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿))
109oveq2d 7311 . . . . 5 (𝑓 = 𝐹 → (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
11 eqid 2733 . . . . 5 (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))
12 ovex 7328 . . . . 5 (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V
1310, 11, 12fvmpt 6895 . . . 4 (𝐹 ∈ (𝑋m 𝑌) → ((𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
147, 13sylan9eq 2793 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹 ∈ (𝑋m 𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
155, 14syldan 590 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
16153impa 1108 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1537  wcel 2101  cmpt 5160  wf 6443  cfv 6447  (class class class)co 7295  m cmap 8635  TopOnctopon 22087  Filcfil 23024   FilMap cfm 23112   fLim cflim 23113   fLimf cflf 23114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-map 8637  df-fbas 20622  df-top 22071  df-topon 22088  df-fil 23025  df-flf 23119
This theorem is referenced by:  flfnei  23170  isflf  23172  hausflf  23176  flfcnp  23183  flfssfcf  23217  uffcfflf  23218  cnpfcf  23220  cnextcn  23246  tsmscls  23317  cnextucn  23483  cmetcaulem  24480  fmcncfil  31909
  Copyright terms: Public domain W3C validator