| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flfval | Structured version Visualization version GIF version | ||
| Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| flfval | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax 22932 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 2 | filtop 23863 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
| 3 | elmapg 8879 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿) → (𝐹 ∈ (𝑋 ↑m 𝑌) ↔ 𝐹:𝑌⟶𝑋)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋 ↑m 𝑌) ↔ 𝐹:𝑌⟶𝑋)) |
| 5 | 4 | biimpar 477 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ (𝑋 ↑m 𝑌)) |
| 6 | flffval 23997 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))) | |
| 7 | 6 | fveq1d 6908 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = ((𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹)) |
| 8 | oveq2 7439 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑋 FilMap 𝑓) = (𝑋 FilMap 𝐹)) | |
| 9 | 8 | fveq1d 6908 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑋 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| 10 | 9 | oveq2d 7447 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 11 | eqid 2737 | . . . . 5 ⊢ (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) | |
| 12 | ovex 7464 | . . . . 5 ⊢ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 7016 | . . . 4 ⊢ (𝐹 ∈ (𝑋 ↑m 𝑌) → ((𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 14 | 7, 13 | sylan9eq 2797 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹 ∈ (𝑋 ↑m 𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 15 | 5, 14 | syldan 591 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 16 | 15 | 3impa 1110 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 TopOnctopon 22916 Filcfil 23853 FilMap cfm 23941 fLim cflim 23942 fLimf cflf 23943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-fbas 21361 df-top 22900 df-topon 22917 df-fil 23854 df-flf 23948 |
| This theorem is referenced by: flfnei 23999 isflf 24001 hausflf 24005 flfcnp 24012 flfssfcf 24046 uffcfflf 24047 cnpfcf 24049 cnextcn 24075 tsmscls 24146 cnextucn 24312 cmetcaulem 25322 fmcncfil 33930 |
| Copyright terms: Public domain | W3C validator |