MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfval Structured version   Visualization version   GIF version

Theorem flfval 23893
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))

Proof of Theorem flfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 toponmax 22829 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2 filtop 23758 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
3 elmapg 8773 . . . . 5 ((𝑋𝐽𝑌𝐿) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
41, 2, 3syl2an 596 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
54biimpar 477 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ (𝑋m 𝑌))
6 flffval 23892 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))))
76fveq1d 6828 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = ((𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹))
8 oveq2 7361 . . . . . . 7 (𝑓 = 𝐹 → (𝑋 FilMap 𝑓) = (𝑋 FilMap 𝐹))
98fveq1d 6828 . . . . . 6 (𝑓 = 𝐹 → ((𝑋 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿))
109oveq2d 7369 . . . . 5 (𝑓 = 𝐹 → (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
11 eqid 2729 . . . . 5 (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))
12 ovex 7386 . . . . 5 (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V
1310, 11, 12fvmpt 6934 . . . 4 (𝐹 ∈ (𝑋m 𝑌) → ((𝑓 ∈ (𝑋m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
147, 13sylan9eq 2784 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹 ∈ (𝑋m 𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
155, 14syldan 591 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
16153impa 1109 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  TopOnctopon 22813  Filcfil 23748   FilMap cfm 23836   fLim cflim 23837   fLimf cflf 23838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-fbas 21276  df-top 22797  df-topon 22814  df-fil 23749  df-flf 23843
This theorem is referenced by:  flfnei  23894  isflf  23896  hausflf  23900  flfcnp  23907  flfssfcf  23941  uffcfflf  23942  cnpfcf  23944  cnextcn  23970  tsmscls  24041  cnextucn  24206  cmetcaulem  25204  fmcncfil  33897
  Copyright terms: Public domain W3C validator