| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flfval | Structured version Visualization version GIF version | ||
| Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| flfval | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax 22842 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 2 | filtop 23771 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
| 3 | elmapg 8769 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿) → (𝐹 ∈ (𝑋 ↑m 𝑌) ↔ 𝐹:𝑌⟶𝑋)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋 ↑m 𝑌) ↔ 𝐹:𝑌⟶𝑋)) |
| 5 | 4 | biimpar 477 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ (𝑋 ↑m 𝑌)) |
| 6 | flffval 23905 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))) | |
| 7 | 6 | fveq1d 6830 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = ((𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹)) |
| 8 | oveq2 7360 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑋 FilMap 𝑓) = (𝑋 FilMap 𝐹)) | |
| 9 | 8 | fveq1d 6830 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑋 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| 10 | 9 | oveq2d 7368 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 11 | eqid 2733 | . . . . 5 ⊢ (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) | |
| 12 | ovex 7385 | . . . . 5 ⊢ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6935 | . . . 4 ⊢ (𝐹 ∈ (𝑋 ↑m 𝑌) → ((𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 14 | 7, 13 | sylan9eq 2788 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹 ∈ (𝑋 ↑m 𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 15 | 5, 14 | syldan 591 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 16 | 15 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 TopOnctopon 22826 Filcfil 23761 FilMap cfm 23849 fLim cflim 23850 fLimf cflf 23851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-fbas 21290 df-top 22810 df-topon 22827 df-fil 23762 df-flf 23856 |
| This theorem is referenced by: flfnei 23907 isflf 23909 hausflf 23913 flfcnp 23920 flfssfcf 23954 uffcfflf 23955 cnpfcf 23957 cnextcn 23983 tsmscls 24054 cnextucn 24218 cmetcaulem 25216 fmcncfil 33965 |
| Copyright terms: Public domain | W3C validator |