| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flfval | Structured version Visualization version GIF version | ||
| Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| flfval | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax 22864 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 2 | filtop 23793 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
| 3 | elmapg 8853 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿) → (𝐹 ∈ (𝑋 ↑m 𝑌) ↔ 𝐹:𝑌⟶𝑋)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋 ↑m 𝑌) ↔ 𝐹:𝑌⟶𝑋)) |
| 5 | 4 | biimpar 477 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ (𝑋 ↑m 𝑌)) |
| 6 | flffval 23927 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))) | |
| 7 | 6 | fveq1d 6878 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = ((𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹)) |
| 8 | oveq2 7413 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑋 FilMap 𝑓) = (𝑋 FilMap 𝐹)) | |
| 9 | 8 | fveq1d 6878 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑋 FilMap 𝑓)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| 10 | 9 | oveq2d 7421 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 11 | eqid 2735 | . . . . 5 ⊢ (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿))) | |
| 12 | ovex 7438 | . . . . 5 ⊢ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6986 | . . . 4 ⊢ (𝐹 ∈ (𝑋 ↑m 𝑌) → ((𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 14 | 7, 13 | sylan9eq 2790 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹 ∈ (𝑋 ↑m 𝑌)) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 15 | 5, 14 | syldan 591 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 16 | 15 | 3impa 1109 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 TopOnctopon 22848 Filcfil 23783 FilMap cfm 23871 fLim cflim 23872 fLimf cflf 23873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-fbas 21312 df-top 22832 df-topon 22849 df-fil 23784 df-flf 23878 |
| This theorem is referenced by: flfnei 23929 isflf 23931 hausflf 23935 flfcnp 23942 flfssfcf 23976 uffcfflf 23977 cnpfcf 23979 cnextcn 24005 tsmscls 24076 cnextucn 24241 cmetcaulem 25240 fmcncfil 33962 |
| Copyright terms: Public domain | W3C validator |