MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmco Structured version   Visualization version   GIF version

Theorem fmco 23848
Description: Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmco (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))

Proof of Theorem fmco
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . . . . . . . 11 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ∈ (fBas‘𝑍))
2 ssfg 23759 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑍) → 𝐵 ⊆ (𝑍filGen𝐵))
31, 2syl 17 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ⊆ (𝑍filGen𝐵))
43sseld 3945 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵𝑢 ∈ (𝑍filGen𝐵)))
5 simpl2 1193 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑌𝑊)
6 simprr 772 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐺:𝑍𝑌)
7 eqid 2729 . . . . . . . . . . . 12 (𝑍filGen𝐵) = (𝑍filGen𝐵)
87imaelfm 23838 . . . . . . . . . . 11 (((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) ∧ 𝑢 ∈ (𝑍filGen𝐵)) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
98ex 412 . . . . . . . . . 10 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
105, 1, 6, 9syl3anc 1373 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
114, 10syld 47 . . . . . . . 8 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵 → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
1211imp 406 . . . . . . 7 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
13 imaeq2 6027 . . . . . . . . . . 11 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = (𝐹 “ (𝐺𝑢)))
14 imaco 6224 . . . . . . . . . . 11 ((𝐹𝐺) “ 𝑢) = (𝐹 “ (𝐺𝑢))
1513, 14eqtr4di 2782 . . . . . . . . . 10 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = ((𝐹𝐺) “ 𝑢))
1615sseq1d 3978 . . . . . . . . 9 (𝑡 = (𝐺𝑢) → ((𝐹𝑡) ⊆ 𝑠 ↔ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
1716rspcev 3588 . . . . . . . 8 (((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) ∧ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)
1817ex 412 . . . . . . 7 ((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
1912, 18syl 17 . . . . . 6 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
2019rexlimdva 3134 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
21 elfm 23834 . . . . . . . 8 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
225, 1, 6, 21syl3anc 1373 . . . . . . 7 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
23 sstr2 3953 . . . . . . . . . . 11 (((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
24 imass2 6073 . . . . . . . . . . . 12 ((𝐺𝑢) ⊆ 𝑡 → (𝐹 “ (𝐺𝑢)) ⊆ (𝐹𝑡))
2514, 24eqsstrid 3985 . . . . . . . . . . 11 ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡))
2623, 25syl11 33 . . . . . . . . . 10 ((𝐹𝑡) ⊆ 𝑠 → ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2726reximdv 3148 . . . . . . . . 9 ((𝐹𝑡) ⊆ 𝑠 → (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2827com12 32 . . . . . . . 8 (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2928adantl 481 . . . . . . 7 ((𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3022, 29biimtrdi 253 . . . . . 6 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3130rexlimdv 3132 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3220, 31impbid 212 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 ↔ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
3332anbi2d 630 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
34 simpl1 1192 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑋𝑉)
35 fco 6712 . . . . 5 ((𝐹:𝑌𝑋𝐺:𝑍𝑌) → (𝐹𝐺):𝑍𝑋)
3635adantl 481 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝐹𝐺):𝑍𝑋)
37 elfm 23834 . . . 4 ((𝑋𝑉𝐵 ∈ (fBas‘𝑍) ∧ (𝐹𝐺):𝑍𝑋) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3834, 1, 36, 37syl3anc 1373 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
39 fmfil 23831 . . . . . 6 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
405, 1, 6, 39syl3anc 1373 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
41 filfbas 23735 . . . . 5 (((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
4240, 41syl 17 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
43 simprl 770 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐹:𝑌𝑋)
44 elfm 23834 . . . 4 ((𝑋𝑉 ∧ ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4534, 42, 43, 44syl3anc 1373 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4633, 38, 453bitr4d 311 . 2 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ 𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵))))
4746eqrdv 2727 1 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3914  cima 5641  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  fBascfbas 21252  filGencfg 21253  Filcfil 23732   FilMap cfm 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fbas 21261  df-fg 21262  df-fil 23733  df-fm 23825
This theorem is referenced by:  ufldom  23849  flfcnp  23891
  Copyright terms: Public domain W3C validator