MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmco Structured version   Visualization version   GIF version

Theorem fmco 23876
Description: Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmco (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))

Proof of Theorem fmco
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . . . . . . . 11 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ∈ (fBas‘𝑍))
2 ssfg 23787 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑍) → 𝐵 ⊆ (𝑍filGen𝐵))
31, 2syl 17 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ⊆ (𝑍filGen𝐵))
43sseld 3928 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵𝑢 ∈ (𝑍filGen𝐵)))
5 simpl2 1193 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑌𝑊)
6 simprr 772 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐺:𝑍𝑌)
7 eqid 2731 . . . . . . . . . . . 12 (𝑍filGen𝐵) = (𝑍filGen𝐵)
87imaelfm 23866 . . . . . . . . . . 11 (((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) ∧ 𝑢 ∈ (𝑍filGen𝐵)) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
98ex 412 . . . . . . . . . 10 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
105, 1, 6, 9syl3anc 1373 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
114, 10syld 47 . . . . . . . 8 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵 → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
1211imp 406 . . . . . . 7 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
13 imaeq2 6004 . . . . . . . . . . 11 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = (𝐹 “ (𝐺𝑢)))
14 imaco 6198 . . . . . . . . . . 11 ((𝐹𝐺) “ 𝑢) = (𝐹 “ (𝐺𝑢))
1513, 14eqtr4di 2784 . . . . . . . . . 10 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = ((𝐹𝐺) “ 𝑢))
1615sseq1d 3961 . . . . . . . . 9 (𝑡 = (𝐺𝑢) → ((𝐹𝑡) ⊆ 𝑠 ↔ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
1716rspcev 3572 . . . . . . . 8 (((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) ∧ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)
1817ex 412 . . . . . . 7 ((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
1912, 18syl 17 . . . . . 6 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
2019rexlimdva 3133 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
21 elfm 23862 . . . . . . . 8 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
225, 1, 6, 21syl3anc 1373 . . . . . . 7 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
23 sstr2 3936 . . . . . . . . . . 11 (((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
24 imass2 6050 . . . . . . . . . . . 12 ((𝐺𝑢) ⊆ 𝑡 → (𝐹 “ (𝐺𝑢)) ⊆ (𝐹𝑡))
2514, 24eqsstrid 3968 . . . . . . . . . . 11 ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡))
2623, 25syl11 33 . . . . . . . . . 10 ((𝐹𝑡) ⊆ 𝑠 → ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2726reximdv 3147 . . . . . . . . 9 ((𝐹𝑡) ⊆ 𝑠 → (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2827com12 32 . . . . . . . 8 (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2928adantl 481 . . . . . . 7 ((𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3022, 29biimtrdi 253 . . . . . 6 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3130rexlimdv 3131 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3220, 31impbid 212 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 ↔ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
3332anbi2d 630 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
34 simpl1 1192 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑋𝑉)
35 fco 6675 . . . . 5 ((𝐹:𝑌𝑋𝐺:𝑍𝑌) → (𝐹𝐺):𝑍𝑋)
3635adantl 481 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝐹𝐺):𝑍𝑋)
37 elfm 23862 . . . 4 ((𝑋𝑉𝐵 ∈ (fBas‘𝑍) ∧ (𝐹𝐺):𝑍𝑋) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3834, 1, 36, 37syl3anc 1373 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
39 fmfil 23859 . . . . . 6 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
405, 1, 6, 39syl3anc 1373 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
41 filfbas 23763 . . . . 5 (((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
4240, 41syl 17 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
43 simprl 770 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐹:𝑌𝑋)
44 elfm 23862 . . . 4 ((𝑋𝑉 ∧ ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4534, 42, 43, 44syl3anc 1373 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4633, 38, 453bitr4d 311 . 2 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ 𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵))))
4746eqrdv 2729 1 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3897  cima 5617  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  fBascfbas 21279  filGencfg 21280  Filcfil 23760   FilMap cfm 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21288  df-fg 21289  df-fil 23761  df-fm 23853
This theorem is referenced by:  ufldom  23877  flfcnp  23919
  Copyright terms: Public domain W3C validator