MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmco Structured version   Visualization version   GIF version

Theorem fmco 23956
Description: Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmco (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))

Proof of Theorem fmco
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . . . . . . . . . 11 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ∈ (fBas‘𝑍))
2 ssfg 23867 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑍) → 𝐵 ⊆ (𝑍filGen𝐵))
31, 2syl 17 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ⊆ (𝑍filGen𝐵))
43sseld 3978 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵𝑢 ∈ (𝑍filGen𝐵)))
5 simpl2 1189 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑌𝑊)
6 simprr 771 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐺:𝑍𝑌)
7 eqid 2726 . . . . . . . . . . . 12 (𝑍filGen𝐵) = (𝑍filGen𝐵)
87imaelfm 23946 . . . . . . . . . . 11 (((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) ∧ 𝑢 ∈ (𝑍filGen𝐵)) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
98ex 411 . . . . . . . . . 10 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
105, 1, 6, 9syl3anc 1368 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
114, 10syld 47 . . . . . . . 8 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵 → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
1211imp 405 . . . . . . 7 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
13 imaeq2 6065 . . . . . . . . . . 11 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = (𝐹 “ (𝐺𝑢)))
14 imaco 6262 . . . . . . . . . . 11 ((𝐹𝐺) “ 𝑢) = (𝐹 “ (𝐺𝑢))
1513, 14eqtr4di 2784 . . . . . . . . . 10 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = ((𝐹𝐺) “ 𝑢))
1615sseq1d 4011 . . . . . . . . 9 (𝑡 = (𝐺𝑢) → ((𝐹𝑡) ⊆ 𝑠 ↔ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
1716rspcev 3608 . . . . . . . 8 (((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) ∧ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)
1817ex 411 . . . . . . 7 ((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
1912, 18syl 17 . . . . . 6 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
2019rexlimdva 3145 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
21 elfm 23942 . . . . . . . 8 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
225, 1, 6, 21syl3anc 1368 . . . . . . 7 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
23 sstr2 3986 . . . . . . . . . . 11 (((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
24 imass2 6112 . . . . . . . . . . . 12 ((𝐺𝑢) ⊆ 𝑡 → (𝐹 “ (𝐺𝑢)) ⊆ (𝐹𝑡))
2514, 24eqsstrid 4028 . . . . . . . . . . 11 ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡))
2623, 25syl11 33 . . . . . . . . . 10 ((𝐹𝑡) ⊆ 𝑠 → ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2726reximdv 3160 . . . . . . . . 9 ((𝐹𝑡) ⊆ 𝑠 → (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2827com12 32 . . . . . . . 8 (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2928adantl 480 . . . . . . 7 ((𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3022, 29biimtrdi 252 . . . . . 6 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3130rexlimdv 3143 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3220, 31impbid 211 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 ↔ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
3332anbi2d 628 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
34 simpl1 1188 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑋𝑉)
35 fco 6752 . . . . 5 ((𝐹:𝑌𝑋𝐺:𝑍𝑌) → (𝐹𝐺):𝑍𝑋)
3635adantl 480 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝐹𝐺):𝑍𝑋)
37 elfm 23942 . . . 4 ((𝑋𝑉𝐵 ∈ (fBas‘𝑍) ∧ (𝐹𝐺):𝑍𝑋) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3834, 1, 36, 37syl3anc 1368 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
39 fmfil 23939 . . . . . 6 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
405, 1, 6, 39syl3anc 1368 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
41 filfbas 23843 . . . . 5 (((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
4240, 41syl 17 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
43 simprl 769 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐹:𝑌𝑋)
44 elfm 23942 . . . 4 ((𝑋𝑉 ∧ ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4534, 42, 43, 44syl3anc 1368 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4633, 38, 453bitr4d 310 . 2 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ 𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵))))
4746eqrdv 2724 1 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  wss 3947  cima 5685  ccom 5686  wf 6550  cfv 6554  (class class class)co 7424  fBascfbas 21331  filGencfg 21332  Filcfil 23840   FilMap cfm 23928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-fbas 21340  df-fg 21341  df-fil 23841  df-fm 23933
This theorem is referenced by:  ufldom  23957  flfcnp  23999
  Copyright terms: Public domain W3C validator