MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmco Structured version   Visualization version   GIF version

Theorem fmco 23020
Description: Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmco (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))

Proof of Theorem fmco
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1191 . . . . . . . . . . 11 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ∈ (fBas‘𝑍))
2 ssfg 22931 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑍) → 𝐵 ⊆ (𝑍filGen𝐵))
31, 2syl 17 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐵 ⊆ (𝑍filGen𝐵))
43sseld 3916 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵𝑢 ∈ (𝑍filGen𝐵)))
5 simpl2 1190 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑌𝑊)
6 simprr 769 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐺:𝑍𝑌)
7 eqid 2738 . . . . . . . . . . . 12 (𝑍filGen𝐵) = (𝑍filGen𝐵)
87imaelfm 23010 . . . . . . . . . . 11 (((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) ∧ 𝑢 ∈ (𝑍filGen𝐵)) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
98ex 412 . . . . . . . . . 10 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
105, 1, 6, 9syl3anc 1369 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢 ∈ (𝑍filGen𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
114, 10syld 47 . . . . . . . 8 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑢𝐵 → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵)))
1211imp 406 . . . . . . 7 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵))
13 imaeq2 5954 . . . . . . . . . . 11 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = (𝐹 “ (𝐺𝑢)))
14 imaco 6144 . . . . . . . . . . 11 ((𝐹𝐺) “ 𝑢) = (𝐹 “ (𝐺𝑢))
1513, 14eqtr4di 2797 . . . . . . . . . 10 (𝑡 = (𝐺𝑢) → (𝐹𝑡) = ((𝐹𝐺) “ 𝑢))
1615sseq1d 3948 . . . . . . . . 9 (𝑡 = (𝐺𝑢) → ((𝐹𝑡) ⊆ 𝑠 ↔ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
1716rspcev 3552 . . . . . . . 8 (((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) ∧ ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)
1817ex 412 . . . . . . 7 ((𝐺𝑢) ∈ ((𝑌 FilMap 𝐺)‘𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
1912, 18syl 17 . . . . . 6 ((((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) ∧ 𝑢𝐵) → (((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
2019rexlimdva 3212 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 → ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
21 elfm 23006 . . . . . . . 8 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
225, 1, 6, 21syl3anc 1369 . . . . . . 7 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) ↔ (𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡)))
23 sstr2 3924 . . . . . . . . . . 11 (((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
24 imass2 5999 . . . . . . . . . . . 12 ((𝐺𝑢) ⊆ 𝑡 → (𝐹 “ (𝐺𝑢)) ⊆ (𝐹𝑡))
2514, 24eqsstrid 3965 . . . . . . . . . . 11 ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ (𝐹𝑡))
2623, 25syl11 33 . . . . . . . . . 10 ((𝐹𝑡) ⊆ 𝑠 → ((𝐺𝑢) ⊆ 𝑡 → ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2726reximdv 3201 . . . . . . . . 9 ((𝐹𝑡) ⊆ 𝑠 → (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2827com12 32 . . . . . . . 8 (∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡 → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
2928adantl 481 . . . . . . 7 ((𝑡𝑌 ∧ ∃𝑢𝐵 (𝐺𝑢) ⊆ 𝑡) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3022, 29syl6bi 252 . . . . . 6 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵) → ((𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3130rexlimdv 3211 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠 → ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠))
3220, 31impbid 211 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠 ↔ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠))
3332anbi2d 628 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
34 simpl1 1189 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝑋𝑉)
35 fco 6608 . . . . 5 ((𝐹:𝑌𝑋𝐺:𝑍𝑌) → (𝐹𝐺):𝑍𝑋)
3635adantl 481 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝐹𝐺):𝑍𝑋)
37 elfm 23006 . . . 4 ((𝑋𝑉𝐵 ∈ (fBas‘𝑍) ∧ (𝐹𝐺):𝑍𝑋) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
3834, 1, 36, 37syl3anc 1369 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ (𝑠𝑋 ∧ ∃𝑢𝐵 ((𝐹𝐺) “ 𝑢) ⊆ 𝑠)))
39 fmfil 23003 . . . . . 6 ((𝑌𝑊𝐵 ∈ (fBas‘𝑍) ∧ 𝐺:𝑍𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
405, 1, 6, 39syl3anc 1369 . . . . 5 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌))
41 filfbas 22907 . . . . 5 (((𝑌 FilMap 𝐺)‘𝐵) ∈ (Fil‘𝑌) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
4240, 41syl 17 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌))
43 simprl 767 . . . 4 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → 𝐹:𝑌𝑋)
44 elfm 23006 . . . 4 ((𝑋𝑉 ∧ ((𝑌 FilMap 𝐺)‘𝐵) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4534, 42, 43, 44syl3anc 1369 . . 3 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)) ↔ (𝑠𝑋 ∧ ∃𝑡 ∈ ((𝑌 FilMap 𝐺)‘𝐵)(𝐹𝑡) ⊆ 𝑠)))
4633, 38, 453bitr4d 310 . 2 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → (𝑠 ∈ ((𝑋 FilMap (𝐹𝐺))‘𝐵) ↔ 𝑠 ∈ ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵))))
4746eqrdv 2736 1 (((𝑋𝑉𝑌𝑊𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌𝑋𝐺:𝑍𝑌)) → ((𝑋 FilMap (𝐹𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  cima 5583  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  fBascfbas 20498  filGencfg 20499  Filcfil 22904   FilMap cfm 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-fil 22905  df-fm 22997
This theorem is referenced by:  ufldom  23021  flfcnp  23063
  Copyright terms: Public domain W3C validator