Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisumlem Structured version   Visualization version   GIF version

Theorem iprodefisumlem 35784
Description: Lemma for iprodefisum 35785. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisumlem.1 𝑍 = (ℤ𝑀)
iprodefisumlem.2 (𝜑𝑀 ∈ ℤ)
iprodefisumlem.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
iprodefisumlem (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))

Proof of Theorem iprodefisumlem
Dummy variables 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodefisumlem.1 . . . 4 𝑍 = (ℤ𝑀)
2 iprodefisumlem.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 iprodefisumlem.3 . . . . . 6 (𝜑𝐹:𝑍⟶ℂ)
4 fvco3 6921 . . . . . 6 ((𝐹:𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹𝑘)))
53, 4sylan 580 . . . . 5 ((𝜑𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹𝑘)))
63ffvelcdmda 7017 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 efcl 15989 . . . . . 6 ((𝐹𝑘) ∈ ℂ → (exp‘(𝐹𝑘)) ∈ ℂ)
86, 7syl 17 . . . . 5 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) ∈ ℂ)
95, 8eqeltrd 2831 . . . 4 ((𝜑𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) ∈ ℂ)
101, 2, 9prodf 15794 . . 3 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ)
1110ffnd 6652 . 2 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍)
12 eff 15988 . . . 4 exp:ℂ⟶ℂ
13 ffn 6651 . . . 4 (exp:ℂ⟶ℂ → exp Fn ℂ)
1412, 13ax-mp 5 . . 3 exp Fn ℂ
151, 2, 6serf 13937 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
16 fnfco 6688 . . 3 ((exp Fn ℂ ∧ seq𝑀( + , 𝐹):𝑍⟶ℂ) → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
1714, 15, 16sylancr 587 . 2 (𝜑 → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
18 fveq2 6822 . . . . . . . 8 (𝑗 = 𝑀 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑀))
19 2fveq3 6827 . . . . . . . 8 (𝑗 = 𝑀 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))
2018, 19eqeq12d 2747 . . . . . . 7 (𝑗 = 𝑀 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))
2120imbi2d 340 . . . . . 6 (𝑗 = 𝑀 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))))
22 fveq2 6822 . . . . . . . 8 (𝑗 = 𝑛 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑛))
23 2fveq3 6827 . . . . . . . 8 (𝑗 = 𝑛 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))
2422, 23eqeq12d 2747 . . . . . . 7 (𝑗 = 𝑛 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))))
2524imbi2d 340 . . . . . 6 (𝑗 = 𝑛 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))))
26 fveq2 6822 . . . . . . . 8 (𝑗 = (𝑛 + 1) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)))
27 2fveq3 6827 . . . . . . . 8 (𝑗 = (𝑛 + 1) → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
2826, 27eqeq12d 2747 . . . . . . 7 (𝑗 = (𝑛 + 1) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
2928imbi2d 340 . . . . . 6 (𝑗 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
30 fveq2 6822 . . . . . . . 8 (𝑗 = 𝑘 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑘))
31 2fveq3 6827 . . . . . . . 8 (𝑗 = 𝑘 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
3230, 31eqeq12d 2747 . . . . . . 7 (𝑗 = 𝑘 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
3332imbi2d 340 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))))
34 uzid 12747 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
352, 34syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ𝑀))
3635, 1eleqtrrdi 2842 . . . . . . . . 9 (𝜑𝑀𝑍)
37 fvco3 6921 . . . . . . . . 9 ((𝐹:𝑍⟶ℂ ∧ 𝑀𝑍) → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹𝑀)))
383, 36, 37syl2anc 584 . . . . . . . 8 (𝜑 → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹𝑀)))
39 seq1 13921 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀))
402, 39syl 17 . . . . . . . 8 (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀))
41 seq1 13921 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
422, 41syl 17 . . . . . . . . 9 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
4342fveq2d 6826 . . . . . . . 8 (𝜑 → (exp‘(seq𝑀( + , 𝐹)‘𝑀)) = (exp‘(𝐹𝑀)))
4438, 40, 433eqtr4d 2776 . . . . . . 7 (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))
4544a1i 11 . . . . . 6 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))
46 oveq1 7353 . . . . . . . . . . 11 ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
47463ad2ant3 1135 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
483adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → 𝐹:𝑍⟶ℂ)
49 peano2uz 12799 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
5049, 1eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
5150adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (𝑛 + 1) ∈ 𝑍)
52 fvco3 6921 . . . . . . . . . . . . . 14 ((𝐹:𝑍⟶ℂ ∧ (𝑛 + 1) ∈ 𝑍) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1))))
5348, 51, 52syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1))))
5453oveq2d 7362 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
5515ffvelcdmda 7017 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
5655expcom 413 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ))
571eqcomi 2740 . . . . . . . . . . . . . . 15 (ℤ𝑀) = 𝑍
5856, 57eleq2s 2849 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ))
5958imp 406 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
6048, 51ffvelcdmd 7018 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
61 efadd 16001 . . . . . . . . . . . . 13 (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (𝐹‘(𝑛 + 1)) ∈ ℂ) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6259, 60, 61syl2anc 584 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6354, 62eqtr4d 2769 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
64633adant3 1132 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6547, 64eqtrd 2766 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
66 seqp1 13923 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
6766adantr 480 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
68673adant3 1132 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
69 seqp1 13923 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7069adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7170fveq2d 6826 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
72713adant3 1132 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
7365, 68, 723eqtr4d 2776 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
74733exp 1119 . . . . . . 7 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
7574a2d 29 . . . . . 6 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
7621, 25, 29, 33, 45, 75uzind4 12804 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
7776, 1eleq2s 2849 . . . 4 (𝑘𝑍 → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
7877impcom 407 . . 3 ((𝜑𝑘𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
79 fvco3 6921 . . . 4 ((seq𝑀( + , 𝐹):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
8015, 79sylan 580 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
8178, 80eqtr4d 2769 . 2 ((𝜑𝑘𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = ((exp ∘ seq𝑀( + , 𝐹))‘𝑘))
8211, 17, 81eqfnfvd 6967 1 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cz 12468  cuz 12732  seqcseq 13908  expce 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974
This theorem is referenced by:  iprodefisum  35785
  Copyright terms: Public domain W3C validator