Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisumlem Structured version   Visualization version   GIF version

Theorem iprodefisumlem 34710
Description: Lemma for iprodefisum 34711. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisumlem.1 𝑍 = (β„€β‰₯β€˜π‘€)
iprodefisumlem.2 (πœ‘ β†’ 𝑀 ∈ β„€)
iprodefisumlem.3 (πœ‘ β†’ 𝐹:π‘βŸΆβ„‚)
Assertion
Ref Expression
iprodefisumlem (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))

Proof of Theorem iprodefisumlem
Dummy variables 𝑗 π‘˜ 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodefisumlem.1 . . . 4 𝑍 = (β„€β‰₯β€˜π‘€)
2 iprodefisumlem.2 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
3 iprodefisumlem.3 . . . . . 6 (πœ‘ β†’ 𝐹:π‘βŸΆβ„‚)
4 fvco3 6991 . . . . . 6 ((𝐹:π‘βŸΆβ„‚ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘˜) = (expβ€˜(πΉβ€˜π‘˜)))
53, 4sylan 581 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘˜) = (expβ€˜(πΉβ€˜π‘˜)))
63ffvelcdmda 7087 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
7 efcl 16026 . . . . . 6 ((πΉβ€˜π‘˜) ∈ β„‚ β†’ (expβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
86, 7syl 17 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (expβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
95, 8eqeltrd 2834 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘˜) ∈ β„‚)
101, 2, 9prodf 15833 . . 3 (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)):π‘βŸΆβ„‚)
1110ffnd 6719 . 2 (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)) Fn 𝑍)
12 eff 16025 . . . 4 exp:β„‚βŸΆβ„‚
13 ffn 6718 . . . 4 (exp:β„‚βŸΆβ„‚ β†’ exp Fn β„‚)
1412, 13ax-mp 5 . . 3 exp Fn β„‚
151, 2, 6serf 13996 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐹):π‘βŸΆβ„‚)
16 fnfco 6757 . . 3 ((exp Fn β„‚ ∧ seq𝑀( + , 𝐹):π‘βŸΆβ„‚) β†’ (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
1714, 15, 16sylancr 588 . 2 (πœ‘ β†’ (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
18 fveq2 6892 . . . . . . . 8 (𝑗 = 𝑀 β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€))
19 2fveq3 6897 . . . . . . . 8 (𝑗 = 𝑀 β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)))
2018, 19eqeq12d 2749 . . . . . . 7 (𝑗 = 𝑀 β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€))))
2120imbi2d 341 . . . . . 6 (𝑗 = 𝑀 β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)))))
22 fveq2 6892 . . . . . . . 8 (𝑗 = 𝑛 β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›))
23 2fveq3 6897 . . . . . . . 8 (𝑗 = 𝑛 β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))
2422, 23eqeq12d 2749 . . . . . . 7 (𝑗 = 𝑛 β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))))
2524imbi2d 341 . . . . . 6 (𝑗 = 𝑛 β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))))
26 fveq2 6892 . . . . . . . 8 (𝑗 = (𝑛 + 1) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)))
27 2fveq3 6897 . . . . . . . 8 (𝑗 = (𝑛 + 1) β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))
2826, 27eqeq12d 2749 . . . . . . 7 (𝑗 = (𝑛 + 1) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1)))))
2928imbi2d 341 . . . . . 6 (𝑗 = (𝑛 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))))
30 fveq2 6892 . . . . . . . 8 (𝑗 = π‘˜ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜))
31 2fveq3 6897 . . . . . . . 8 (𝑗 = π‘˜ β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
3230, 31eqeq12d 2749 . . . . . . 7 (𝑗 = π‘˜ β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜))))
3332imbi2d 341 . . . . . 6 (𝑗 = π‘˜ β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))))
34 uzid 12837 . . . . . . . . . . 11 (𝑀 ∈ β„€ β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘€))
352, 34syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘€))
3635, 1eleqtrrdi 2845 . . . . . . . . 9 (πœ‘ β†’ 𝑀 ∈ 𝑍)
37 fvco3 6991 . . . . . . . . 9 ((𝐹:π‘βŸΆβ„‚ ∧ 𝑀 ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘€) = (expβ€˜(πΉβ€˜π‘€)))
383, 36, 37syl2anc 585 . . . . . . . 8 (πœ‘ β†’ ((exp ∘ 𝐹)β€˜π‘€) = (expβ€˜(πΉβ€˜π‘€)))
39 seq1 13979 . . . . . . . . 9 (𝑀 ∈ β„€ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = ((exp ∘ 𝐹)β€˜π‘€))
402, 39syl 17 . . . . . . . 8 (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = ((exp ∘ 𝐹)β€˜π‘€))
41 seq1 13979 . . . . . . . . . 10 (𝑀 ∈ β„€ β†’ (seq𝑀( + , 𝐹)β€˜π‘€) = (πΉβ€˜π‘€))
422, 41syl 17 . . . . . . . . 9 (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘€) = (πΉβ€˜π‘€))
4342fveq2d 6896 . . . . . . . 8 (πœ‘ β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)) = (expβ€˜(πΉβ€˜π‘€)))
4438, 40, 433eqtr4d 2783 . . . . . . 7 (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)))
4544a1i 11 . . . . . 6 (𝑀 ∈ β„€ β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€))))
46 oveq1 7416 . . . . . . . . . . 11 ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
47463ad2ant3 1136 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
483adantl 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ 𝐹:π‘βŸΆβ„‚)
49 peano2uz 12885 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜π‘€))
5049, 1eleqtrrdi 2845 . . . . . . . . . . . . . . 15 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ 𝑍)
5150adantr 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (𝑛 + 1) ∈ 𝑍)
52 fvco3 6991 . . . . . . . . . . . . . 14 ((𝐹:π‘βŸΆβ„‚ ∧ (𝑛 + 1) ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜(𝑛 + 1)) = (expβ€˜(πΉβ€˜(𝑛 + 1))))
5348, 51, 52syl2anc 585 . . . . . . . . . . . . 13 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ ((exp ∘ 𝐹)β€˜(𝑛 + 1)) = (expβ€˜(πΉβ€˜(𝑛 + 1))))
5453oveq2d 7425 . . . . . . . . . . . 12 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· (expβ€˜(πΉβ€˜(𝑛 + 1)))))
5515ffvelcdmda 7087 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚)
5655expcom 415 . . . . . . . . . . . . . . 15 (𝑛 ∈ 𝑍 β†’ (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚))
571eqcomi 2742 . . . . . . . . . . . . . . 15 (β„€β‰₯β€˜π‘€) = 𝑍
5856, 57eleq2s 2852 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚))
5958imp 408 . . . . . . . . . . . . 13 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚)
6048, 51ffvelcdmd 7088 . . . . . . . . . . . . 13 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
61 efadd 16037 . . . . . . . . . . . . 13 (((seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚ ∧ (πΉβ€˜(𝑛 + 1)) ∈ β„‚) β†’ (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· (expβ€˜(πΉβ€˜(𝑛 + 1)))))
6259, 60, 61syl2anc 585 . . . . . . . . . . . 12 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· (expβ€˜(πΉβ€˜(𝑛 + 1)))))
6354, 62eqtr4d 2776 . . . . . . . . . . 11 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
64633adant3 1133 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
6547, 64eqtrd 2773 . . . . . . . . 9 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
66 seqp1 13981 . . . . . . . . . . 11 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
6766adantr 482 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
68673adant3 1133 . . . . . . . . 9 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
69 seqp1 13981 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( + , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1))))
7069adantr 482 . . . . . . . . . . 11 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (seq𝑀( + , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1))))
7170fveq2d 6896 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
72713adant3 1133 . . . . . . . . 9 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
7365, 68, 723eqtr4d 2783 . . . . . . . 8 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))
74733exp 1120 . . . . . . 7 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))))
7574a2d 29 . . . . . 6 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))))
7621, 25, 29, 33, 45, 75uzind4 12890 . . . . 5 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜))))
7776, 1eleq2s 2852 . . . 4 (π‘˜ ∈ 𝑍 β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜))))
7877impcom 409 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
79 fvco3 6991 . . . 4 ((seq𝑀( + , 𝐹):π‘βŸΆβ„‚ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ seq𝑀( + , 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
8015, 79sylan 581 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ seq𝑀( + , 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
8178, 80eqtr4d 2776 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = ((exp ∘ seq𝑀( + , 𝐹))β€˜π‘˜))
8211, 17, 81eqfnfvd 7036 1 (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   ∘ ccom 5681   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  1c1 11111   + caddc 11113   Β· cmul 11115  β„€cz 12558  β„€β‰₯cuz 12822  seqcseq 13966  expce 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011
This theorem is referenced by:  iprodefisum  34711
  Copyright terms: Public domain W3C validator