Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisumlem Structured version   Visualization version   GIF version

Theorem iprodefisumlem 34313
Description: Lemma for iprodefisum 34314. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisumlem.1 𝑍 = (ℤ𝑀)
iprodefisumlem.2 (𝜑𝑀 ∈ ℤ)
iprodefisumlem.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
iprodefisumlem (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))

Proof of Theorem iprodefisumlem
Dummy variables 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodefisumlem.1 . . . 4 𝑍 = (ℤ𝑀)
2 iprodefisumlem.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 iprodefisumlem.3 . . . . . 6 (𝜑𝐹:𝑍⟶ℂ)
4 fvco3 6940 . . . . . 6 ((𝐹:𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹𝑘)))
53, 4sylan 580 . . . . 5 ((𝜑𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹𝑘)))
63ffvelcdmda 7035 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 efcl 15965 . . . . . 6 ((𝐹𝑘) ∈ ℂ → (exp‘(𝐹𝑘)) ∈ ℂ)
86, 7syl 17 . . . . 5 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) ∈ ℂ)
95, 8eqeltrd 2838 . . . 4 ((𝜑𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) ∈ ℂ)
101, 2, 9prodf 15772 . . 3 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ)
1110ffnd 6669 . 2 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍)
12 eff 15964 . . . 4 exp:ℂ⟶ℂ
13 ffn 6668 . . . 4 (exp:ℂ⟶ℂ → exp Fn ℂ)
1412, 13ax-mp 5 . . 3 exp Fn ℂ
151, 2, 6serf 13936 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
16 fnfco 6707 . . 3 ((exp Fn ℂ ∧ seq𝑀( + , 𝐹):𝑍⟶ℂ) → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
1714, 15, 16sylancr 587 . 2 (𝜑 → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
18 fveq2 6842 . . . . . . . 8 (𝑗 = 𝑀 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑀))
19 2fveq3 6847 . . . . . . . 8 (𝑗 = 𝑀 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))
2018, 19eqeq12d 2752 . . . . . . 7 (𝑗 = 𝑀 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))
2120imbi2d 340 . . . . . 6 (𝑗 = 𝑀 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))))
22 fveq2 6842 . . . . . . . 8 (𝑗 = 𝑛 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑛))
23 2fveq3 6847 . . . . . . . 8 (𝑗 = 𝑛 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))
2422, 23eqeq12d 2752 . . . . . . 7 (𝑗 = 𝑛 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))))
2524imbi2d 340 . . . . . 6 (𝑗 = 𝑛 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))))
26 fveq2 6842 . . . . . . . 8 (𝑗 = (𝑛 + 1) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)))
27 2fveq3 6847 . . . . . . . 8 (𝑗 = (𝑛 + 1) → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
2826, 27eqeq12d 2752 . . . . . . 7 (𝑗 = (𝑛 + 1) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
2928imbi2d 340 . . . . . 6 (𝑗 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
30 fveq2 6842 . . . . . . . 8 (𝑗 = 𝑘 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑘))
31 2fveq3 6847 . . . . . . . 8 (𝑗 = 𝑘 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
3230, 31eqeq12d 2752 . . . . . . 7 (𝑗 = 𝑘 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
3332imbi2d 340 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))))
34 uzid 12778 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
352, 34syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ𝑀))
3635, 1eleqtrrdi 2849 . . . . . . . . 9 (𝜑𝑀𝑍)
37 fvco3 6940 . . . . . . . . 9 ((𝐹:𝑍⟶ℂ ∧ 𝑀𝑍) → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹𝑀)))
383, 36, 37syl2anc 584 . . . . . . . 8 (𝜑 → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹𝑀)))
39 seq1 13919 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀))
402, 39syl 17 . . . . . . . 8 (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀))
41 seq1 13919 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
422, 41syl 17 . . . . . . . . 9 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
4342fveq2d 6846 . . . . . . . 8 (𝜑 → (exp‘(seq𝑀( + , 𝐹)‘𝑀)) = (exp‘(𝐹𝑀)))
4438, 40, 433eqtr4d 2786 . . . . . . 7 (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))
4544a1i 11 . . . . . 6 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))
46 oveq1 7364 . . . . . . . . . . 11 ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
47463ad2ant3 1135 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
483adantl 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → 𝐹:𝑍⟶ℂ)
49 peano2uz 12826 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
5049, 1eleqtrrdi 2849 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
5150adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (𝑛 + 1) ∈ 𝑍)
52 fvco3 6940 . . . . . . . . . . . . . 14 ((𝐹:𝑍⟶ℂ ∧ (𝑛 + 1) ∈ 𝑍) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1))))
5348, 51, 52syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1))))
5453oveq2d 7373 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
5515ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
5655expcom 414 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ))
571eqcomi 2745 . . . . . . . . . . . . . . 15 (ℤ𝑀) = 𝑍
5856, 57eleq2s 2856 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ))
5958imp 407 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
6048, 51ffvelcdmd 7036 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
61 efadd 15976 . . . . . . . . . . . . 13 (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (𝐹‘(𝑛 + 1)) ∈ ℂ) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6259, 60, 61syl2anc 584 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6354, 62eqtr4d 2779 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
64633adant3 1132 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6547, 64eqtrd 2776 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
66 seqp1 13921 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
6766adantr 481 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
68673adant3 1132 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
69 seqp1 13921 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7069adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7170fveq2d 6846 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
72713adant3 1132 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
7365, 68, 723eqtr4d 2786 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
74733exp 1119 . . . . . . 7 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
7574a2d 29 . . . . . 6 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
7621, 25, 29, 33, 45, 75uzind4 12831 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
7776, 1eleq2s 2856 . . . 4 (𝑘𝑍 → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
7877impcom 408 . . 3 ((𝜑𝑘𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
79 fvco3 6940 . . . 4 ((seq𝑀( + , 𝐹):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
8015, 79sylan 580 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
8178, 80eqtr4d 2779 . 2 ((𝜑𝑘𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = ((exp ∘ seq𝑀( + , 𝐹))‘𝑘))
8211, 17, 81eqfnfvd 6985 1 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  cz 12499  cuz 12763  seqcseq 13906  expce 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950
This theorem is referenced by:  iprodefisum  34314
  Copyright terms: Public domain W3C validator