Step | Hyp | Ref
| Expression |
1 | | iprodefisumlem.1 |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | iprodefisumlem.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | iprodefisumlem.3 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
4 | | fvco3 6849 |
. . . . . 6
⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑘 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹‘𝑘))) |
5 | 3, 4 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹‘𝑘))) |
6 | 3 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
7 | | efcl 15720 |
. . . . . 6
⊢ ((𝐹‘𝑘) ∈ ℂ → (exp‘(𝐹‘𝑘)) ∈ ℂ) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘(𝐹‘𝑘)) ∈ ℂ) |
9 | 5, 8 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑘) ∈ ℂ) |
10 | 1, 2, 9 | prodf 15527 |
. . 3
⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ) |
11 | 10 | ffnd 6585 |
. 2
⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍) |
12 | | eff 15719 |
. . . 4
⊢
exp:ℂ⟶ℂ |
13 | | ffn 6584 |
. . . 4
⊢
(exp:ℂ⟶ℂ → exp Fn ℂ) |
14 | 12, 13 | ax-mp 5 |
. . 3
⊢ exp Fn
ℂ |
15 | 1, 2, 6 | serf 13679 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
16 | | fnfco 6623 |
. . 3
⊢ ((exp Fn
ℂ ∧ seq𝑀( + ,
𝐹):𝑍⟶ℂ) → (exp ∘
seq𝑀( + , 𝐹)) Fn 𝑍) |
17 | 14, 15, 16 | sylancr 586 |
. 2
⊢ (𝜑 → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍) |
18 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑀)) |
19 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))) |
20 | 18, 19 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑗 = 𝑀 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))) |
21 | 20 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = 𝑀 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))) |
22 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑛)) |
23 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) |
24 | 22, 23 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑗 = 𝑛 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))) |
25 | 24 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = 𝑛 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))))) |
26 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑗 = (𝑛 + 1) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1))) |
27 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑗 = (𝑛 + 1) → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
28 | 26, 27 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑗 = (𝑛 + 1) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))) |
29 | 28 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
30 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑘)) |
31 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
32 | 30, 31 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))) |
33 | 32 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))) |
34 | | uzid 12526 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
35 | 2, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
36 | 35, 1 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
37 | | fvco3 6849 |
. . . . . . . . 9
⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑀 ∈ 𝑍) → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹‘𝑀))) |
38 | 3, 36, 37 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹‘𝑀))) |
39 | | seq1 13662 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀)) |
40 | 2, 39 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀)) |
41 | | seq1 13662 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
42 | 2, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
43 | 42 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝜑 → (exp‘(seq𝑀( + , 𝐹)‘𝑀)) = (exp‘(𝐹‘𝑀))) |
44 | 38, 40, 43 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))) |
45 | 44 | a1i 11 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))) |
46 | | oveq1 7262 |
. . . . . . . . . . 11
⊢
((seq𝑀( · ,
(exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
47 | 46 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
48 | 3 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → 𝐹:𝑍⟶ℂ) |
49 | | peano2uz 12570 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
50 | 49, 1 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈ 𝑍) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (𝑛 + 1) ∈ 𝑍) |
52 | | fvco3 6849 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑍⟶ℂ ∧ (𝑛 + 1) ∈ 𝑍) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1)))) |
53 | 48, 51, 52 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1)))) |
54 | 53 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1))))) |
55 | 15 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
56 | 55 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)) |
57 | 1 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) = 𝑍 |
58 | 56, 57 | eleq2s 2857 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)) |
59 | 58 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
60 | 48, 51 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
61 | | efadd 15731 |
. . . . . . . . . . . . 13
⊢
(((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (𝐹‘(𝑛 + 1)) ∈ ℂ) →
(exp‘((seq𝑀( + ,
𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1))))) |
62 | 59, 60, 61 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1))))) |
63 | 54, 62 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
64 | 63 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
65 | 47, 64 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
66 | | seqp1 13664 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
67 | 66 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
68 | 67 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1)))) |
69 | | seqp1 13664 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
70 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
71 | 70 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
72 | 71 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
73 | 65, 68, 72 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
74 | 73 | 3exp 1117 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
75 | 74 | a2d 29 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
76 | 21, 25, 29, 33, 45, 75 | uzind4 12575 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))) |
77 | 76, 1 | eleq2s 2857 |
. . . 4
⊢ (𝑘 ∈ 𝑍 → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))) |
78 | 77 | impcom 407 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
79 | | fvco3 6849 |
. . . 4
⊢
((seq𝑀( + , 𝐹):𝑍⟶ℂ ∧ 𝑘 ∈ 𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
80 | 15, 79 | sylan 579 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))) |
81 | 78, 80 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = ((exp ∘ seq𝑀( + , 𝐹))‘𝑘)) |
82 | 11, 17, 81 | eqfnfvd 6894 |
1
⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹))) |