Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisumlem Structured version   Visualization version   GIF version

Theorem iprodefisumlem 35387
Description: Lemma for iprodefisum 35388. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisumlem.1 𝑍 = (β„€β‰₯β€˜π‘€)
iprodefisumlem.2 (πœ‘ β†’ 𝑀 ∈ β„€)
iprodefisumlem.3 (πœ‘ β†’ 𝐹:π‘βŸΆβ„‚)
Assertion
Ref Expression
iprodefisumlem (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))

Proof of Theorem iprodefisumlem
Dummy variables 𝑗 π‘˜ 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodefisumlem.1 . . . 4 𝑍 = (β„€β‰₯β€˜π‘€)
2 iprodefisumlem.2 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
3 iprodefisumlem.3 . . . . . 6 (πœ‘ β†’ 𝐹:π‘βŸΆβ„‚)
4 fvco3 6990 . . . . . 6 ((𝐹:π‘βŸΆβ„‚ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘˜) = (expβ€˜(πΉβ€˜π‘˜)))
53, 4sylan 578 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘˜) = (expβ€˜(πΉβ€˜π‘˜)))
63ffvelcdmda 7087 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
7 efcl 16053 . . . . . 6 ((πΉβ€˜π‘˜) ∈ β„‚ β†’ (expβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
86, 7syl 17 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (expβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
95, 8eqeltrd 2825 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘˜) ∈ β„‚)
101, 2, 9prodf 15860 . . 3 (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)):π‘βŸΆβ„‚)
1110ffnd 6718 . 2 (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)) Fn 𝑍)
12 eff 16052 . . . 4 exp:β„‚βŸΆβ„‚
13 ffn 6717 . . . 4 (exp:β„‚βŸΆβ„‚ β†’ exp Fn β„‚)
1412, 13ax-mp 5 . . 3 exp Fn β„‚
151, 2, 6serf 14022 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐹):π‘βŸΆβ„‚)
16 fnfco 6756 . . 3 ((exp Fn β„‚ ∧ seq𝑀( + , 𝐹):π‘βŸΆβ„‚) β†’ (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
1714, 15, 16sylancr 585 . 2 (πœ‘ β†’ (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
18 fveq2 6890 . . . . . . . 8 (𝑗 = 𝑀 β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€))
19 2fveq3 6895 . . . . . . . 8 (𝑗 = 𝑀 β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)))
2018, 19eqeq12d 2741 . . . . . . 7 (𝑗 = 𝑀 β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€))))
2120imbi2d 339 . . . . . 6 (𝑗 = 𝑀 β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)))))
22 fveq2 6890 . . . . . . . 8 (𝑗 = 𝑛 β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›))
23 2fveq3 6895 . . . . . . . 8 (𝑗 = 𝑛 β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))
2422, 23eqeq12d 2741 . . . . . . 7 (𝑗 = 𝑛 β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))))
2524imbi2d 339 . . . . . 6 (𝑗 = 𝑛 β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))))
26 fveq2 6890 . . . . . . . 8 (𝑗 = (𝑛 + 1) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)))
27 2fveq3 6895 . . . . . . . 8 (𝑗 = (𝑛 + 1) β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))
2826, 27eqeq12d 2741 . . . . . . 7 (𝑗 = (𝑛 + 1) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1)))))
2928imbi2d 339 . . . . . 6 (𝑗 = (𝑛 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))))
30 fveq2 6890 . . . . . . . 8 (𝑗 = π‘˜ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜))
31 2fveq3 6895 . . . . . . . 8 (𝑗 = π‘˜ β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
3230, 31eqeq12d 2741 . . . . . . 7 (𝑗 = π‘˜ β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜))))
3332imbi2d 339 . . . . . 6 (𝑗 = π‘˜ β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘—) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘—))) ↔ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))))
34 uzid 12862 . . . . . . . . . . 11 (𝑀 ∈ β„€ β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘€))
352, 34syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘€))
3635, 1eleqtrrdi 2836 . . . . . . . . 9 (πœ‘ β†’ 𝑀 ∈ 𝑍)
37 fvco3 6990 . . . . . . . . 9 ((𝐹:π‘βŸΆβ„‚ ∧ 𝑀 ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜π‘€) = (expβ€˜(πΉβ€˜π‘€)))
383, 36, 37syl2anc 582 . . . . . . . 8 (πœ‘ β†’ ((exp ∘ 𝐹)β€˜π‘€) = (expβ€˜(πΉβ€˜π‘€)))
39 seq1 14006 . . . . . . . . 9 (𝑀 ∈ β„€ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = ((exp ∘ 𝐹)β€˜π‘€))
402, 39syl 17 . . . . . . . 8 (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = ((exp ∘ 𝐹)β€˜π‘€))
41 seq1 14006 . . . . . . . . . 10 (𝑀 ∈ β„€ β†’ (seq𝑀( + , 𝐹)β€˜π‘€) = (πΉβ€˜π‘€))
422, 41syl 17 . . . . . . . . 9 (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘€) = (πΉβ€˜π‘€))
4342fveq2d 6894 . . . . . . . 8 (πœ‘ β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)) = (expβ€˜(πΉβ€˜π‘€)))
4438, 40, 433eqtr4d 2775 . . . . . . 7 (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€)))
4544a1i 11 . . . . . 6 (𝑀 ∈ β„€ β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘€) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘€))))
46 oveq1 7420 . . . . . . . . . . 11 ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
47463ad2ant3 1132 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
483adantl 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ 𝐹:π‘βŸΆβ„‚)
49 peano2uz 12910 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜π‘€))
5049, 1eleqtrrdi 2836 . . . . . . . . . . . . . . 15 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ 𝑍)
5150adantr 479 . . . . . . . . . . . . . 14 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (𝑛 + 1) ∈ 𝑍)
52 fvco3 6990 . . . . . . . . . . . . . 14 ((𝐹:π‘βŸΆβ„‚ ∧ (𝑛 + 1) ∈ 𝑍) β†’ ((exp ∘ 𝐹)β€˜(𝑛 + 1)) = (expβ€˜(πΉβ€˜(𝑛 + 1))))
5348, 51, 52syl2anc 582 . . . . . . . . . . . . 13 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ ((exp ∘ 𝐹)β€˜(𝑛 + 1)) = (expβ€˜(πΉβ€˜(𝑛 + 1))))
5453oveq2d 7429 . . . . . . . . . . . 12 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· (expβ€˜(πΉβ€˜(𝑛 + 1)))))
5515ffvelcdmda 7087 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚)
5655expcom 412 . . . . . . . . . . . . . . 15 (𝑛 ∈ 𝑍 β†’ (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚))
571eqcomi 2734 . . . . . . . . . . . . . . 15 (β„€β‰₯β€˜π‘€) = 𝑍
5856, 57eleq2s 2843 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚))
5958imp 405 . . . . . . . . . . . . 13 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚)
6048, 51ffvelcdmd 7088 . . . . . . . . . . . . 13 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
61 efadd 16065 . . . . . . . . . . . . 13 (((seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚ ∧ (πΉβ€˜(𝑛 + 1)) ∈ β„‚) β†’ (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· (expβ€˜(πΉβ€˜(𝑛 + 1)))))
6259, 60, 61syl2anc 582 . . . . . . . . . . . 12 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))) = ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· (expβ€˜(πΉβ€˜(𝑛 + 1)))))
6354, 62eqtr4d 2768 . . . . . . . . . . 11 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
64633adant3 1129 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ ((expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
6547, 64eqtrd 2765 . . . . . . . . 9 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
66 seqp1 14008 . . . . . . . . . . 11 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
6766adantr 479 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
68673adant3 1129 . . . . . . . . 9 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) Β· ((exp ∘ 𝐹)β€˜(𝑛 + 1))))
69 seqp1 14008 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( + , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1))))
7069adantr 479 . . . . . . . . . . 11 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (seq𝑀( + , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1))))
7170fveq2d 6894 . . . . . . . . . 10 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘) β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
72713adant3 1129 . . . . . . . . 9 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))) = (expβ€˜((seq𝑀( + , 𝐹)β€˜π‘›) + (πΉβ€˜(𝑛 + 1)))))
7365, 68, 723eqtr4d 2775 . . . . . . . 8 ((𝑛 ∈ (β„€β‰₯β€˜π‘€) ∧ πœ‘ ∧ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))
74733exp 1116 . . . . . . 7 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ ((seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))))
7574a2d 29 . . . . . 6 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ ((πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘›) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘›))) β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜(𝑛 + 1)) = (expβ€˜(seq𝑀( + , 𝐹)β€˜(𝑛 + 1))))))
7621, 25, 29, 33, 45, 75uzind4 12915 . . . . 5 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜))))
7776, 1eleq2s 2843 . . . 4 (π‘˜ ∈ 𝑍 β†’ (πœ‘ β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜))))
7877impcom 406 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
79 fvco3 6990 . . . 4 ((seq𝑀( + , 𝐹):π‘βŸΆβ„‚ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ seq𝑀( + , 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
8015, 79sylan 578 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((exp ∘ seq𝑀( + , 𝐹))β€˜π‘˜) = (expβ€˜(seq𝑀( + , 𝐹)β€˜π‘˜)))
8178, 80eqtr4d 2768 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (seq𝑀( Β· , (exp ∘ 𝐹))β€˜π‘˜) = ((exp ∘ seq𝑀( + , 𝐹))β€˜π‘˜))
8211, 17, 81eqfnfvd 7036 1 (πœ‘ β†’ seq𝑀( Β· , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ∘ ccom 5677   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7413  β„‚cc 11131  1c1 11134   + caddc 11136   Β· cmul 11138  β„€cz 12583  β„€β‰₯cuz 12847  seqcseq 13993  expce 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-ico 13357  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-fac 14260  df-bc 14289  df-hash 14317  df-shft 15041  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-limsup 15442  df-clim 15459  df-rlim 15460  df-sum 15660  df-ef 16038
This theorem is referenced by:  iprodefisum  35388
  Copyright terms: Public domain W3C validator