MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Visualization version   GIF version

Theorem resinf1o 26452
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)

Proof of Theorem resinf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 26451 . . 3 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
2 eqid 2730 . . . . 5 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)) = (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))
3 halfpire 26380 . . . . . . . 8 (π / 2) ∈ ℝ
4 neghalfpire 26381 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5 iccssre 13397 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
64, 3, 5mp2an 692 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℝ
76sseli 3945 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ)
8 resubcl 11493 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ)
93, 7, 8sylancr 587 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ)
104, 3elicc2i 13380 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥𝑥 ≤ (π / 2)))
1110simp3bi 1147 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2))
12 subge0 11698 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
133, 7, 12sylancr 587 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
1411, 13mpbird 257 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥))
153recni 11195 . . . . . . . . . 10 (π / 2) ∈ ℂ
16 picn 26374 . . . . . . . . . 10 π ∈ ℂ
1715negcli 11497 . . . . . . . . . 10 -(π / 2) ∈ ℂ
1816, 15negsubi 11507 . . . . . . . . . . 11 (π + -(π / 2)) = (π − (π / 2))
19 pidiv2halves 26383 . . . . . . . . . . . 12 ((π / 2) + (π / 2)) = π
2016, 15, 15, 19subaddrii 11518 . . . . . . . . . . 11 (π − (π / 2)) = (π / 2)
2118, 20eqtri 2753 . . . . . . . . . 10 (π + -(π / 2)) = (π / 2)
2215, 16, 17, 21subaddrii 11518 . . . . . . . . 9 ((π / 2) − π) = -(π / 2)
2310simp2bi 1146 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥)
2422, 23eqbrtrid 5145 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − π) ≤ 𝑥)
25 pire 26373 . . . . . . . . 9 π ∈ ℝ
26 suble 11663 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
273, 25, 7, 26mp3an12i 1467 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
2824, 27mpbid 232 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π)
29 0re 11183 . . . . . . . 8 0 ∈ ℝ
3029, 25elicc2i 13380 . . . . . . 7 (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π))
319, 14, 28, 30syl3anbrc 1344 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π))
3231adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (-(π / 2)[,](π / 2))) → ((π / 2) − 𝑥) ∈ (0[,]π))
3329, 25elicc2i 13380 . . . . . . . . 9 (𝑦 ∈ (0[,]π) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ π))
3433simp1bi 1145 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℝ)
35 resubcl 11493 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((π / 2) − 𝑦) ∈ ℝ)
363, 34, 35sylancr 587 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ ℝ)
3733simp3bi 1147 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 𝑦 ≤ π)
3815, 15subnegi 11508 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
3938, 19eqtri 2753 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
4037, 39breqtrrdi 5152 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ≤ ((π / 2) − -(π / 2)))
41 lesub 11664 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ -(π / 2) ∈ ℝ) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
423, 4, 41mp3an23 1455 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4334, 42syl 17 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4440, 43mpbid 232 . . . . . . 7 (𝑦 ∈ (0[,]π) → -(π / 2) ≤ ((π / 2) − 𝑦))
4515subidi 11500 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
4633simp2bi 1146 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 0 ≤ 𝑦)
4745, 46eqbrtrid 5145 . . . . . . . 8 (𝑦 ∈ (0[,]π) → ((π / 2) − (π / 2)) ≤ 𝑦)
48 suble 11663 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
493, 3, 34, 48mp3an12i 1467 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
5047, 49mpbid 232 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ≤ (π / 2))
514, 3elicc2i 13380 . . . . . . 7 (((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)) ↔ (((π / 2) − 𝑦) ∈ ℝ ∧ -(π / 2) ≤ ((π / 2) − 𝑦) ∧ ((π / 2) − 𝑦) ≤ (π / 2)))
5236, 44, 50, 51syl3anbrc 1344 . . . . . 6 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
5352adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (0[,]π)) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
54 iccssre 13397 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
5529, 25, 54mp2an 692 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
56 ax-resscn 11132 . . . . . . . . . 10 ℝ ⊆ ℂ
5755, 56sstri 3959 . . . . . . . . 9 (0[,]π) ⊆ ℂ
5857sseli 3945 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℂ)
596, 56sstri 3959 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℂ
6059sseli 3945 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℂ)
61 subsub23 11433 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6215, 61mp3an1 1450 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6358, 60, 62syl2anr 597 . . . . . . 7 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π)) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6463adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
65 eqcom 2737 . . . . . 6 (𝑥 = ((π / 2) − 𝑦) ↔ ((π / 2) − 𝑦) = 𝑥)
66 eqcom 2737 . . . . . 6 (𝑦 = ((π / 2) − 𝑥) ↔ ((π / 2) − 𝑥) = 𝑦)
6764, 65, 663bitr4g 314 . . . . 5 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (𝑥 = ((π / 2) − 𝑦) ↔ 𝑦 = ((π / 2) − 𝑥)))
682, 32, 53, 67f1o2d 7646 . . . 4 (⊤ → (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π))
6968mptru 1547 . . 3 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)
70 f1oco 6826 . . 3 (((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
711, 69, 70mp2an 692 . 2 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
72 cosf 16100 . . . . . . . 8 cos:ℂ⟶ℂ
73 ffn 6691 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
7472, 73ax-mp 5 . . . . . . 7 cos Fn ℂ
75 fnssres 6644 . . . . . . 7 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
7674, 57, 75mp2an 692 . . . . . 6 (cos ↾ (0[,]π)) Fn (0[,]π)
772, 31fmpti 7087 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)
78 fnfco 6728 . . . . . 6 (((cos ↾ (0[,]π)) Fn (0[,]π) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)))
7976, 77, 78mp2an 692 . . . . 5 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2))
80 sinf 16099 . . . . . . 7 sin:ℂ⟶ℂ
81 ffn 6691 . . . . . . 7 (sin:ℂ⟶ℂ → sin Fn ℂ)
8280, 81ax-mp 5 . . . . . 6 sin Fn ℂ
83 fnssres 6644 . . . . . 6 ((sin Fn ℂ ∧ (-(π / 2)[,](π / 2)) ⊆ ℂ) → (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2)))
8482, 59, 83mp2an 692 . . . . 5 (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))
85 eqfnfv 7006 . . . . 5 ((((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)) ∧ (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦)))
8679, 84, 85mp2an 692 . . . 4 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
8777ffvelcdmi 7058 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) ∈ (0[,]π))
8887fvresd 6881 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
89 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑦 → ((π / 2) − 𝑥) = ((π / 2) − 𝑦))
90 ovex 7423 . . . . . . . 8 ((π / 2) − 𝑦) ∈ V
9189, 2, 90fvmpt 6971 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) = ((π / 2) − 𝑦))
9291fveq2d 6865 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((π / 2) − 𝑦)))
9359sseli 3945 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → 𝑦 ∈ ℂ)
94 coshalfpim 26411 . . . . . . 7 (𝑦 ∈ ℂ → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9593, 94syl 17 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9688, 92, 953eqtrd 2769 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (sin‘𝑦))
97 fvco3 6963 . . . . . 6 (((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
9877, 97mpan 690 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
99 fvres 6880 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦) = (sin‘𝑦))
10096, 98, 993eqtr4d 2775 . . . 4 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
10186, 100mprgbir 3052 . . 3 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2)))
102 f1oeq1 6791 . . 3 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
103101, 102ax-mp 5 . 2 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
10471, 103mpbi 230 1 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cmpt 5191  cres 5643  ccom 5645   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  [,]cicc 13316  sincsin 16036  cosccos 16037  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  efif1olem4  26461  asinrebnd  26818
  Copyright terms: Public domain W3C validator