MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Visualization version   GIF version

Theorem resinf1o 25692
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)

Proof of Theorem resinf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 25691 . . 3 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
2 eqid 2738 . . . . 5 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)) = (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))
3 halfpire 25621 . . . . . . . 8 (π / 2) ∈ ℝ
4 neghalfpire 25622 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5 iccssre 13161 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
64, 3, 5mp2an 689 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℝ
76sseli 3917 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ)
8 resubcl 11285 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ)
93, 7, 8sylancr 587 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ)
104, 3elicc2i 13145 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥𝑥 ≤ (π / 2)))
1110simp3bi 1146 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2))
12 subge0 11488 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
133, 7, 12sylancr 587 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
1411, 13mpbird 256 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥))
153recni 10989 . . . . . . . . . 10 (π / 2) ∈ ℂ
16 picn 25616 . . . . . . . . . 10 π ∈ ℂ
1715negcli 11289 . . . . . . . . . 10 -(π / 2) ∈ ℂ
1816, 15negsubi 11299 . . . . . . . . . . 11 (π + -(π / 2)) = (π − (π / 2))
19 pidiv2halves 25624 . . . . . . . . . . . 12 ((π / 2) + (π / 2)) = π
2016, 15, 15, 19subaddrii 11310 . . . . . . . . . . 11 (π − (π / 2)) = (π / 2)
2118, 20eqtri 2766 . . . . . . . . . 10 (π + -(π / 2)) = (π / 2)
2215, 16, 17, 21subaddrii 11310 . . . . . . . . 9 ((π / 2) − π) = -(π / 2)
2310simp2bi 1145 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥)
2422, 23eqbrtrid 5109 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − π) ≤ 𝑥)
25 pire 25615 . . . . . . . . 9 π ∈ ℝ
26 suble 11453 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
273, 25, 7, 26mp3an12i 1464 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
2824, 27mpbid 231 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π)
29 0re 10977 . . . . . . . 8 0 ∈ ℝ
3029, 25elicc2i 13145 . . . . . . 7 (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π))
319, 14, 28, 30syl3anbrc 1342 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π))
3231adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ (-(π / 2)[,](π / 2))) → ((π / 2) − 𝑥) ∈ (0[,]π))
3329, 25elicc2i 13145 . . . . . . . . 9 (𝑦 ∈ (0[,]π) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ π))
3433simp1bi 1144 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℝ)
35 resubcl 11285 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((π / 2) − 𝑦) ∈ ℝ)
363, 34, 35sylancr 587 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ ℝ)
3733simp3bi 1146 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 𝑦 ≤ π)
3815, 15subnegi 11300 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
3938, 19eqtri 2766 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
4037, 39breqtrrdi 5116 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ≤ ((π / 2) − -(π / 2)))
41 lesub 11454 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ -(π / 2) ∈ ℝ) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
423, 4, 41mp3an23 1452 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4334, 42syl 17 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4440, 43mpbid 231 . . . . . . 7 (𝑦 ∈ (0[,]π) → -(π / 2) ≤ ((π / 2) − 𝑦))
4515subidi 11292 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
4633simp2bi 1145 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 0 ≤ 𝑦)
4745, 46eqbrtrid 5109 . . . . . . . 8 (𝑦 ∈ (0[,]π) → ((π / 2) − (π / 2)) ≤ 𝑦)
48 suble 11453 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
493, 3, 34, 48mp3an12i 1464 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
5047, 49mpbid 231 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ≤ (π / 2))
514, 3elicc2i 13145 . . . . . . 7 (((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)) ↔ (((π / 2) − 𝑦) ∈ ℝ ∧ -(π / 2) ≤ ((π / 2) − 𝑦) ∧ ((π / 2) − 𝑦) ≤ (π / 2)))
5236, 44, 50, 51syl3anbrc 1342 . . . . . 6 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
5352adantl 482 . . . . 5 ((⊤ ∧ 𝑦 ∈ (0[,]π)) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
54 iccssre 13161 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
5529, 25, 54mp2an 689 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
56 ax-resscn 10928 . . . . . . . . . 10 ℝ ⊆ ℂ
5755, 56sstri 3930 . . . . . . . . 9 (0[,]π) ⊆ ℂ
5857sseli 3917 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℂ)
596, 56sstri 3930 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℂ
6059sseli 3917 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℂ)
61 subsub23 11226 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6215, 61mp3an1 1447 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6358, 60, 62syl2anr 597 . . . . . . 7 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π)) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6463adantl 482 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
65 eqcom 2745 . . . . . 6 (𝑥 = ((π / 2) − 𝑦) ↔ ((π / 2) − 𝑦) = 𝑥)
66 eqcom 2745 . . . . . 6 (𝑦 = ((π / 2) − 𝑥) ↔ ((π / 2) − 𝑥) = 𝑦)
6764, 65, 663bitr4g 314 . . . . 5 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (𝑥 = ((π / 2) − 𝑦) ↔ 𝑦 = ((π / 2) − 𝑥)))
682, 32, 53, 67f1o2d 7523 . . . 4 (⊤ → (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π))
6968mptru 1546 . . 3 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)
70 f1oco 6739 . . 3 (((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
711, 69, 70mp2an 689 . 2 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
72 cosf 15834 . . . . . . . 8 cos:ℂ⟶ℂ
73 ffn 6600 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
7472, 73ax-mp 5 . . . . . . 7 cos Fn ℂ
75 fnssres 6555 . . . . . . 7 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
7674, 57, 75mp2an 689 . . . . . 6 (cos ↾ (0[,]π)) Fn (0[,]π)
772, 31fmpti 6986 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)
78 fnfco 6639 . . . . . 6 (((cos ↾ (0[,]π)) Fn (0[,]π) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)))
7976, 77, 78mp2an 689 . . . . 5 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2))
80 sinf 15833 . . . . . . 7 sin:ℂ⟶ℂ
81 ffn 6600 . . . . . . 7 (sin:ℂ⟶ℂ → sin Fn ℂ)
8280, 81ax-mp 5 . . . . . 6 sin Fn ℂ
83 fnssres 6555 . . . . . 6 ((sin Fn ℂ ∧ (-(π / 2)[,](π / 2)) ⊆ ℂ) → (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2)))
8482, 59, 83mp2an 689 . . . . 5 (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))
85 eqfnfv 6909 . . . . 5 ((((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)) ∧ (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦)))
8679, 84, 85mp2an 689 . . . 4 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
8777ffvelrni 6960 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) ∈ (0[,]π))
8887fvresd 6794 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
89 oveq2 7283 . . . . . . . 8 (𝑥 = 𝑦 → ((π / 2) − 𝑥) = ((π / 2) − 𝑦))
90 ovex 7308 . . . . . . . 8 ((π / 2) − 𝑦) ∈ V
9189, 2, 90fvmpt 6875 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) = ((π / 2) − 𝑦))
9291fveq2d 6778 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((π / 2) − 𝑦)))
9359sseli 3917 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → 𝑦 ∈ ℂ)
94 coshalfpim 25652 . . . . . . 7 (𝑦 ∈ ℂ → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9593, 94syl 17 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9688, 92, 953eqtrd 2782 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (sin‘𝑦))
97 fvco3 6867 . . . . . 6 (((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
9877, 97mpan 687 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
99 fvres 6793 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦) = (sin‘𝑦))
10096, 98, 993eqtr4d 2788 . . . 4 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
10186, 100mprgbir 3079 . . 3 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2)))
102 f1oeq1 6704 . . 3 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
103101, 102ax-mp 5 . 2 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
10471, 103mpbi 229 1 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wral 3064  wss 3887   class class class wbr 5074  cmpt 5157  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  [,]cicc 13082  sincsin 15773  cosccos 15774  πcpi 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  efif1olem4  25701  asinrebnd  26051
  Copyright terms: Public domain W3C validator