MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Visualization version   GIF version

Theorem resinf1o 26495
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)

Proof of Theorem resinf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 26494 . . 3 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
2 eqid 2735 . . . . 5 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)) = (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))
3 halfpire 26423 . . . . . . . 8 (π / 2) ∈ ℝ
4 neghalfpire 26424 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5 iccssre 13444 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
64, 3, 5mp2an 692 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℝ
76sseli 3954 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ)
8 resubcl 11545 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ)
93, 7, 8sylancr 587 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ)
104, 3elicc2i 13427 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥𝑥 ≤ (π / 2)))
1110simp3bi 1147 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2))
12 subge0 11748 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
133, 7, 12sylancr 587 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
1411, 13mpbird 257 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥))
153recni 11247 . . . . . . . . . 10 (π / 2) ∈ ℂ
16 picn 26417 . . . . . . . . . 10 π ∈ ℂ
1715negcli 11549 . . . . . . . . . 10 -(π / 2) ∈ ℂ
1816, 15negsubi 11559 . . . . . . . . . . 11 (π + -(π / 2)) = (π − (π / 2))
19 pidiv2halves 26426 . . . . . . . . . . . 12 ((π / 2) + (π / 2)) = π
2016, 15, 15, 19subaddrii 11570 . . . . . . . . . . 11 (π − (π / 2)) = (π / 2)
2118, 20eqtri 2758 . . . . . . . . . 10 (π + -(π / 2)) = (π / 2)
2215, 16, 17, 21subaddrii 11570 . . . . . . . . 9 ((π / 2) − π) = -(π / 2)
2310simp2bi 1146 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥)
2422, 23eqbrtrid 5154 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − π) ≤ 𝑥)
25 pire 26416 . . . . . . . . 9 π ∈ ℝ
26 suble 11713 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
273, 25, 7, 26mp3an12i 1467 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
2824, 27mpbid 232 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π)
29 0re 11235 . . . . . . . 8 0 ∈ ℝ
3029, 25elicc2i 13427 . . . . . . 7 (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π))
319, 14, 28, 30syl3anbrc 1344 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π))
3231adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (-(π / 2)[,](π / 2))) → ((π / 2) − 𝑥) ∈ (0[,]π))
3329, 25elicc2i 13427 . . . . . . . . 9 (𝑦 ∈ (0[,]π) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ π))
3433simp1bi 1145 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℝ)
35 resubcl 11545 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((π / 2) − 𝑦) ∈ ℝ)
363, 34, 35sylancr 587 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ ℝ)
3733simp3bi 1147 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 𝑦 ≤ π)
3815, 15subnegi 11560 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
3938, 19eqtri 2758 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
4037, 39breqtrrdi 5161 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ≤ ((π / 2) − -(π / 2)))
41 lesub 11714 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ -(π / 2) ∈ ℝ) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
423, 4, 41mp3an23 1455 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4334, 42syl 17 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4440, 43mpbid 232 . . . . . . 7 (𝑦 ∈ (0[,]π) → -(π / 2) ≤ ((π / 2) − 𝑦))
4515subidi 11552 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
4633simp2bi 1146 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 0 ≤ 𝑦)
4745, 46eqbrtrid 5154 . . . . . . . 8 (𝑦 ∈ (0[,]π) → ((π / 2) − (π / 2)) ≤ 𝑦)
48 suble 11713 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
493, 3, 34, 48mp3an12i 1467 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
5047, 49mpbid 232 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ≤ (π / 2))
514, 3elicc2i 13427 . . . . . . 7 (((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)) ↔ (((π / 2) − 𝑦) ∈ ℝ ∧ -(π / 2) ≤ ((π / 2) − 𝑦) ∧ ((π / 2) − 𝑦) ≤ (π / 2)))
5236, 44, 50, 51syl3anbrc 1344 . . . . . 6 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
5352adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (0[,]π)) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
54 iccssre 13444 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
5529, 25, 54mp2an 692 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
56 ax-resscn 11184 . . . . . . . . . 10 ℝ ⊆ ℂ
5755, 56sstri 3968 . . . . . . . . 9 (0[,]π) ⊆ ℂ
5857sseli 3954 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℂ)
596, 56sstri 3968 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℂ
6059sseli 3954 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℂ)
61 subsub23 11485 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6215, 61mp3an1 1450 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6358, 60, 62syl2anr 597 . . . . . . 7 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π)) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6463adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
65 eqcom 2742 . . . . . 6 (𝑥 = ((π / 2) − 𝑦) ↔ ((π / 2) − 𝑦) = 𝑥)
66 eqcom 2742 . . . . . 6 (𝑦 = ((π / 2) − 𝑥) ↔ ((π / 2) − 𝑥) = 𝑦)
6764, 65, 663bitr4g 314 . . . . 5 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (𝑥 = ((π / 2) − 𝑦) ↔ 𝑦 = ((π / 2) − 𝑥)))
682, 32, 53, 67f1o2d 7659 . . . 4 (⊤ → (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π))
6968mptru 1547 . . 3 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)
70 f1oco 6840 . . 3 (((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
711, 69, 70mp2an 692 . 2 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
72 cosf 16141 . . . . . . . 8 cos:ℂ⟶ℂ
73 ffn 6705 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
7472, 73ax-mp 5 . . . . . . 7 cos Fn ℂ
75 fnssres 6660 . . . . . . 7 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
7674, 57, 75mp2an 692 . . . . . 6 (cos ↾ (0[,]π)) Fn (0[,]π)
772, 31fmpti 7101 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)
78 fnfco 6742 . . . . . 6 (((cos ↾ (0[,]π)) Fn (0[,]π) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)))
7976, 77, 78mp2an 692 . . . . 5 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2))
80 sinf 16140 . . . . . . 7 sin:ℂ⟶ℂ
81 ffn 6705 . . . . . . 7 (sin:ℂ⟶ℂ → sin Fn ℂ)
8280, 81ax-mp 5 . . . . . 6 sin Fn ℂ
83 fnssres 6660 . . . . . 6 ((sin Fn ℂ ∧ (-(π / 2)[,](π / 2)) ⊆ ℂ) → (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2)))
8482, 59, 83mp2an 692 . . . . 5 (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))
85 eqfnfv 7020 . . . . 5 ((((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)) ∧ (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦)))
8679, 84, 85mp2an 692 . . . 4 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
8777ffvelcdmi 7072 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) ∈ (0[,]π))
8887fvresd 6895 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
89 oveq2 7411 . . . . . . . 8 (𝑥 = 𝑦 → ((π / 2) − 𝑥) = ((π / 2) − 𝑦))
90 ovex 7436 . . . . . . . 8 ((π / 2) − 𝑦) ∈ V
9189, 2, 90fvmpt 6985 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) = ((π / 2) − 𝑦))
9291fveq2d 6879 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((π / 2) − 𝑦)))
9359sseli 3954 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → 𝑦 ∈ ℂ)
94 coshalfpim 26454 . . . . . . 7 (𝑦 ∈ ℂ → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9593, 94syl 17 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9688, 92, 953eqtrd 2774 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (sin‘𝑦))
97 fvco3 6977 . . . . . 6 (((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
9877, 97mpan 690 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
99 fvres 6894 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦) = (sin‘𝑦))
10096, 98, 993eqtr4d 2780 . . . 4 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
10186, 100mprgbir 3058 . . 3 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2)))
102 f1oeq1 6805 . . 3 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
103101, 102ax-mp 5 . 2 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
10471, 103mpbi 230 1 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wral 3051  wss 3926   class class class wbr 5119  cmpt 5201  cres 5656  ccom 5658   Fn wfn 6525  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  cle 11268  cmin 11464  -cneg 11465   / cdiv 11892  2c2 12293  [,]cicc 13363  sincsin 16077  cosccos 16078  πcpi 16080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818
This theorem is referenced by:  efif1olem4  26504  asinrebnd  26861
  Copyright terms: Public domain W3C validator