MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Visualization version   GIF version

Theorem resinf1o 25379
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)

Proof of Theorem resinf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 25378 . . 3 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
2 eqid 2736 . . . . 5 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)) = (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))
3 halfpire 25308 . . . . . . . 8 (π / 2) ∈ ℝ
4 neghalfpire 25309 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5 iccssre 12982 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
64, 3, 5mp2an 692 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℝ
76sseli 3883 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ)
8 resubcl 11107 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ)
93, 7, 8sylancr 590 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ)
104, 3elicc2i 12966 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥𝑥 ≤ (π / 2)))
1110simp3bi 1149 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2))
12 subge0 11310 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
133, 7, 12sylancr 590 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
1411, 13mpbird 260 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥))
153recni 10812 . . . . . . . . . 10 (π / 2) ∈ ℂ
16 picn 25303 . . . . . . . . . 10 π ∈ ℂ
1715negcli 11111 . . . . . . . . . 10 -(π / 2) ∈ ℂ
1816, 15negsubi 11121 . . . . . . . . . . 11 (π + -(π / 2)) = (π − (π / 2))
19 pidiv2halves 25311 . . . . . . . . . . . 12 ((π / 2) + (π / 2)) = π
2016, 15, 15, 19subaddrii 11132 . . . . . . . . . . 11 (π − (π / 2)) = (π / 2)
2118, 20eqtri 2759 . . . . . . . . . 10 (π + -(π / 2)) = (π / 2)
2215, 16, 17, 21subaddrii 11132 . . . . . . . . 9 ((π / 2) − π) = -(π / 2)
2310simp2bi 1148 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥)
2422, 23eqbrtrid 5074 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − π) ≤ 𝑥)
25 pire 25302 . . . . . . . . 9 π ∈ ℝ
26 suble 11275 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
273, 25, 7, 26mp3an12i 1467 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
2824, 27mpbid 235 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π)
29 0re 10800 . . . . . . . 8 0 ∈ ℝ
3029, 25elicc2i 12966 . . . . . . 7 (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π))
319, 14, 28, 30syl3anbrc 1345 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π))
3231adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ (-(π / 2)[,](π / 2))) → ((π / 2) − 𝑥) ∈ (0[,]π))
3329, 25elicc2i 12966 . . . . . . . . 9 (𝑦 ∈ (0[,]π) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ π))
3433simp1bi 1147 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℝ)
35 resubcl 11107 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((π / 2) − 𝑦) ∈ ℝ)
363, 34, 35sylancr 590 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ ℝ)
3733simp3bi 1149 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 𝑦 ≤ π)
3815, 15subnegi 11122 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
3938, 19eqtri 2759 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
4037, 39breqtrrdi 5081 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ≤ ((π / 2) − -(π / 2)))
41 lesub 11276 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ -(π / 2) ∈ ℝ) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
423, 4, 41mp3an23 1455 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4334, 42syl 17 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4440, 43mpbid 235 . . . . . . 7 (𝑦 ∈ (0[,]π) → -(π / 2) ≤ ((π / 2) − 𝑦))
4515subidi 11114 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
4633simp2bi 1148 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 0 ≤ 𝑦)
4745, 46eqbrtrid 5074 . . . . . . . 8 (𝑦 ∈ (0[,]π) → ((π / 2) − (π / 2)) ≤ 𝑦)
48 suble 11275 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
493, 3, 34, 48mp3an12i 1467 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
5047, 49mpbid 235 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ≤ (π / 2))
514, 3elicc2i 12966 . . . . . . 7 (((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)) ↔ (((π / 2) − 𝑦) ∈ ℝ ∧ -(π / 2) ≤ ((π / 2) − 𝑦) ∧ ((π / 2) − 𝑦) ≤ (π / 2)))
5236, 44, 50, 51syl3anbrc 1345 . . . . . 6 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
5352adantl 485 . . . . 5 ((⊤ ∧ 𝑦 ∈ (0[,]π)) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
54 iccssre 12982 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
5529, 25, 54mp2an 692 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
56 ax-resscn 10751 . . . . . . . . . 10 ℝ ⊆ ℂ
5755, 56sstri 3896 . . . . . . . . 9 (0[,]π) ⊆ ℂ
5857sseli 3883 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℂ)
596, 56sstri 3896 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℂ
6059sseli 3883 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℂ)
61 subsub23 11048 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6215, 61mp3an1 1450 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6358, 60, 62syl2anr 600 . . . . . . 7 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π)) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6463adantl 485 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
65 eqcom 2743 . . . . . 6 (𝑥 = ((π / 2) − 𝑦) ↔ ((π / 2) − 𝑦) = 𝑥)
66 eqcom 2743 . . . . . 6 (𝑦 = ((π / 2) − 𝑥) ↔ ((π / 2) − 𝑥) = 𝑦)
6764, 65, 663bitr4g 317 . . . . 5 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (𝑥 = ((π / 2) − 𝑦) ↔ 𝑦 = ((π / 2) − 𝑥)))
682, 32, 53, 67f1o2d 7437 . . . 4 (⊤ → (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π))
6968mptru 1550 . . 3 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)
70 f1oco 6661 . . 3 (((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
711, 69, 70mp2an 692 . 2 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
72 cosf 15649 . . . . . . . 8 cos:ℂ⟶ℂ
73 ffn 6523 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
7472, 73ax-mp 5 . . . . . . 7 cos Fn ℂ
75 fnssres 6478 . . . . . . 7 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
7674, 57, 75mp2an 692 . . . . . 6 (cos ↾ (0[,]π)) Fn (0[,]π)
772, 31fmpti 6907 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)
78 fnfco 6562 . . . . . 6 (((cos ↾ (0[,]π)) Fn (0[,]π) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)))
7976, 77, 78mp2an 692 . . . . 5 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2))
80 sinf 15648 . . . . . . 7 sin:ℂ⟶ℂ
81 ffn 6523 . . . . . . 7 (sin:ℂ⟶ℂ → sin Fn ℂ)
8280, 81ax-mp 5 . . . . . 6 sin Fn ℂ
83 fnssres 6478 . . . . . 6 ((sin Fn ℂ ∧ (-(π / 2)[,](π / 2)) ⊆ ℂ) → (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2)))
8482, 59, 83mp2an 692 . . . . 5 (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))
85 eqfnfv 6830 . . . . 5 ((((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)) ∧ (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦)))
8679, 84, 85mp2an 692 . . . 4 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
8777ffvelrni 6881 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) ∈ (0[,]π))
8887fvresd 6715 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
89 oveq2 7199 . . . . . . . 8 (𝑥 = 𝑦 → ((π / 2) − 𝑥) = ((π / 2) − 𝑦))
90 ovex 7224 . . . . . . . 8 ((π / 2) − 𝑦) ∈ V
9189, 2, 90fvmpt 6796 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) = ((π / 2) − 𝑦))
9291fveq2d 6699 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((π / 2) − 𝑦)))
9359sseli 3883 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → 𝑦 ∈ ℂ)
94 coshalfpim 25339 . . . . . . 7 (𝑦 ∈ ℂ → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9593, 94syl 17 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9688, 92, 953eqtrd 2775 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (sin‘𝑦))
97 fvco3 6788 . . . . . 6 (((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
9877, 97mpan 690 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
99 fvres 6714 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦) = (sin‘𝑦))
10096, 98, 993eqtr4d 2781 . . . 4 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
10186, 100mprgbir 3066 . . 3 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2)))
102 f1oeq1 6627 . . 3 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
103101, 102ax-mp 5 . 2 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
10471, 103mpbi 233 1 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wtru 1544  wcel 2112  wral 3051  wss 3853   class class class wbr 5039  cmpt 5120  cres 5538  ccom 5540   Fn wfn 6353  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697  cle 10833  cmin 11027  -cneg 11028   / cdiv 11454  2c2 11850  [,]cicc 12903  sincsin 15588  cosccos 15589  πcpi 15591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718
This theorem is referenced by:  efif1olem4  25388  asinrebnd  25738
  Copyright terms: Public domain W3C validator