MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Visualization version   GIF version

Theorem resinf1o 26467
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)

Proof of Theorem resinf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 26466 . . 3 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
2 eqid 2731 . . . . 5 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)) = (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))
3 halfpire 26395 . . . . . . . 8 (π / 2) ∈ ℝ
4 neghalfpire 26396 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5 iccssre 13324 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
64, 3, 5mp2an 692 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℝ
76sseli 3925 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ)
8 resubcl 11420 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ)
93, 7, 8sylancr 587 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ)
104, 3elicc2i 13307 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥𝑥 ≤ (π / 2)))
1110simp3bi 1147 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2))
12 subge0 11625 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
133, 7, 12sylancr 587 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2)))
1411, 13mpbird 257 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥))
153recni 11121 . . . . . . . . . 10 (π / 2) ∈ ℂ
16 picn 26389 . . . . . . . . . 10 π ∈ ℂ
1715negcli 11424 . . . . . . . . . 10 -(π / 2) ∈ ℂ
1816, 15negsubi 11434 . . . . . . . . . . 11 (π + -(π / 2)) = (π − (π / 2))
19 pidiv2halves 26398 . . . . . . . . . . . 12 ((π / 2) + (π / 2)) = π
2016, 15, 15, 19subaddrii 11445 . . . . . . . . . . 11 (π − (π / 2)) = (π / 2)
2118, 20eqtri 2754 . . . . . . . . . 10 (π + -(π / 2)) = (π / 2)
2215, 16, 17, 21subaddrii 11445 . . . . . . . . 9 ((π / 2) − π) = -(π / 2)
2310simp2bi 1146 . . . . . . . . 9 (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥)
2422, 23eqbrtrid 5121 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − π) ≤ 𝑥)
25 pire 26388 . . . . . . . . 9 π ∈ ℝ
26 suble 11590 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
273, 25, 7, 26mp3an12i 1467 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → (((π / 2) − π) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ π))
2824, 27mpbid 232 . . . . . . 7 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π)
29 0re 11109 . . . . . . . 8 0 ∈ ℝ
3029, 25elicc2i 13307 . . . . . . 7 (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π))
319, 14, 28, 30syl3anbrc 1344 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π))
3231adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (-(π / 2)[,](π / 2))) → ((π / 2) − 𝑥) ∈ (0[,]π))
3329, 25elicc2i 13307 . . . . . . . . 9 (𝑦 ∈ (0[,]π) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ π))
3433simp1bi 1145 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℝ)
35 resubcl 11420 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((π / 2) − 𝑦) ∈ ℝ)
363, 34, 35sylancr 587 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ ℝ)
3733simp3bi 1147 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 𝑦 ≤ π)
3815, 15subnegi 11435 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
3938, 19eqtri 2754 . . . . . . . . 9 ((π / 2) − -(π / 2)) = π
4037, 39breqtrrdi 5128 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ≤ ((π / 2) − -(π / 2)))
41 lesub 11591 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ -(π / 2) ∈ ℝ) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
423, 4, 41mp3an23 1455 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4334, 42syl 17 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (𝑦 ≤ ((π / 2) − -(π / 2)) ↔ -(π / 2) ≤ ((π / 2) − 𝑦)))
4440, 43mpbid 232 . . . . . . 7 (𝑦 ∈ (0[,]π) → -(π / 2) ≤ ((π / 2) − 𝑦))
4515subidi 11427 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
4633simp2bi 1146 . . . . . . . . 9 (𝑦 ∈ (0[,]π) → 0 ≤ 𝑦)
4745, 46eqbrtrid 5121 . . . . . . . 8 (𝑦 ∈ (0[,]π) → ((π / 2) − (π / 2)) ≤ 𝑦)
48 suble 11590 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
493, 3, 34, 48mp3an12i 1467 . . . . . . . 8 (𝑦 ∈ (0[,]π) → (((π / 2) − (π / 2)) ≤ 𝑦 ↔ ((π / 2) − 𝑦) ≤ (π / 2)))
5047, 49mpbid 232 . . . . . . 7 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ≤ (π / 2))
514, 3elicc2i 13307 . . . . . . 7 (((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)) ↔ (((π / 2) − 𝑦) ∈ ℝ ∧ -(π / 2) ≤ ((π / 2) − 𝑦) ∧ ((π / 2) − 𝑦) ≤ (π / 2)))
5236, 44, 50, 51syl3anbrc 1344 . . . . . 6 (𝑦 ∈ (0[,]π) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
5352adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (0[,]π)) → ((π / 2) − 𝑦) ∈ (-(π / 2)[,](π / 2)))
54 iccssre 13324 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
5529, 25, 54mp2an 692 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
56 ax-resscn 11058 . . . . . . . . . 10 ℝ ⊆ ℂ
5755, 56sstri 3939 . . . . . . . . 9 (0[,]π) ⊆ ℂ
5857sseli 3925 . . . . . . . 8 (𝑦 ∈ (0[,]π) → 𝑦 ∈ ℂ)
596, 56sstri 3939 . . . . . . . . 9 (-(π / 2)[,](π / 2)) ⊆ ℂ
6059sseli 3925 . . . . . . . 8 (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℂ)
61 subsub23 11360 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6215, 61mp3an1 1450 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6358, 60, 62syl2anr 597 . . . . . . 7 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π)) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
6463adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (((π / 2) − 𝑦) = 𝑥 ↔ ((π / 2) − 𝑥) = 𝑦))
65 eqcom 2738 . . . . . 6 (𝑥 = ((π / 2) − 𝑦) ↔ ((π / 2) − 𝑦) = 𝑥)
66 eqcom 2738 . . . . . 6 (𝑦 = ((π / 2) − 𝑥) ↔ ((π / 2) − 𝑥) = 𝑦)
6764, 65, 663bitr4g 314 . . . . 5 ((⊤ ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (0[,]π))) → (𝑥 = ((π / 2) − 𝑦) ↔ 𝑦 = ((π / 2) − 𝑥)))
682, 32, 53, 67f1o2d 7595 . . . 4 (⊤ → (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π))
6968mptru 1548 . . 3 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)
70 f1oco 6781 . . 3 (((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))–1-1-onto→(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
711, 69, 70mp2an 692 . 2 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
72 cosf 16029 . . . . . . . 8 cos:ℂ⟶ℂ
73 ffn 6646 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
7472, 73ax-mp 5 . . . . . . 7 cos Fn ℂ
75 fnssres 6599 . . . . . . 7 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
7674, 57, 75mp2an 692 . . . . . 6 (cos ↾ (0[,]π)) Fn (0[,]π)
772, 31fmpti 7040 . . . . . 6 (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)
78 fnfco 6683 . . . . . 6 (((cos ↾ (0[,]π)) Fn (0[,]π) ∧ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π)) → ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)))
7976, 77, 78mp2an 692 . . . . 5 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2))
80 sinf 16028 . . . . . . 7 sin:ℂ⟶ℂ
81 ffn 6646 . . . . . . 7 (sin:ℂ⟶ℂ → sin Fn ℂ)
8280, 81ax-mp 5 . . . . . 6 sin Fn ℂ
83 fnssres 6599 . . . . . 6 ((sin Fn ℂ ∧ (-(π / 2)[,](π / 2)) ⊆ ℂ) → (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2)))
8482, 59, 83mp2an 692 . . . . 5 (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))
85 eqfnfv 6959 . . . . 5 ((((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) Fn (-(π / 2)[,](π / 2)) ∧ (sin ↾ (-(π / 2)[,](π / 2))) Fn (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦)))
8679, 84, 85mp2an 692 . . . 4 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) ↔ ∀𝑦 ∈ (-(π / 2)[,](π / 2))(((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
8777ffvelcdmi 7011 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) ∈ (0[,]π))
8887fvresd 6837 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
89 oveq2 7349 . . . . . . . 8 (𝑥 = 𝑦 → ((π / 2) − 𝑥) = ((π / 2) − 𝑦))
90 ovex 7374 . . . . . . . 8 ((π / 2) − 𝑦) ∈ V
9189, 2, 90fvmpt 6924 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦) = ((π / 2) − 𝑦))
9291fveq2d 6821 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (cos‘((π / 2) − 𝑦)))
9359sseli 3925 . . . . . . 7 (𝑦 ∈ (-(π / 2)[,](π / 2)) → 𝑦 ∈ ℂ)
94 coshalfpim 26426 . . . . . . 7 (𝑦 ∈ ℂ → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9593, 94syl 17 . . . . . 6 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝑦)) = (sin‘𝑦))
9688, 92, 953eqtrd 2770 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)) = (sin‘𝑦))
97 fvco3 6916 . . . . . 6 (((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)):(-(π / 2)[,](π / 2))⟶(0[,]π) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
9877, 97mpan 690 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((cos ↾ (0[,]π))‘((𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))‘𝑦)))
99 fvres 6836 . . . . 5 (𝑦 ∈ (-(π / 2)[,](π / 2)) → ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦) = (sin‘𝑦))
10096, 98, 993eqtr4d 2776 . . . 4 (𝑦 ∈ (-(π / 2)[,](π / 2)) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥)))‘𝑦) = ((sin ↾ (-(π / 2)[,](π / 2)))‘𝑦))
10186, 100mprgbir 3054 . . 3 ((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2)))
102 f1oeq1 6746 . . 3 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))) = (sin ↾ (-(π / 2)[,](π / 2))) → (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
103101, 102ax-mp 5 . 2 (((cos ↾ (0[,]π)) ∘ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↦ ((π / 2) − 𝑥))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
10471, 103mpbi 230 1 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  wral 3047  wss 3897   class class class wbr 5086  cmpt 5167  cres 5613  ccom 5615   Fn wfn 6471  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  2c2 12175  [,]cicc 13243  sincsin 15965  cosccos 15966  πcpi 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  efif1olem4  26476  asinrebnd  26833
  Copyright terms: Public domain W3C validator