Step | Hyp | Ref
| Expression |
1 | | ovex 7471 |
. . . . 5
⊢
((((Id‘𝐸)
∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V |
2 | | eqid 2737 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) |
3 | 1, 2 | fnmpti 6719 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶) |
4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)) |
5 | | fucoid.k |
. . . . . 6
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
6 | 5 | funcrcl3 48838 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Cat) |
7 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐸) =
(Base‘𝐸) |
8 | | eqid 2737 |
. . . . . 6
⊢
(Id‘𝐸) =
(Id‘𝐸) |
9 | 7, 8 | cidfn 17733 |
. . . . 5
⊢ (𝐸 ∈ Cat →
(Id‘𝐸) Fn
(Base‘𝐸)) |
10 | 6, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (Id‘𝐸) Fn (Base‘𝐸)) |
11 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
12 | 11, 7, 5 | funcf1 17926 |
. . . . 5
⊢ (𝜑 → 𝐾:(Base‘𝐷)⟶(Base‘𝐸)) |
13 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
14 | | fucoid.f |
. . . . . 6
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
15 | 13, 11, 14 | funcf1 17926 |
. . . . 5
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
16 | 12, 15 | fcod 6769 |
. . . 4
⊢ (𝜑 → (𝐾 ∘ 𝐹):(Base‘𝐶)⟶(Base‘𝐸)) |
17 | | fnfco 6781 |
. . . 4
⊢
(((Id‘𝐸) Fn
(Base‘𝐸) ∧ (𝐾 ∘ 𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹)) Fn (Base‘𝐶)) |
18 | 10, 16, 17 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹)) Fn (Base‘𝐶)) |
19 | | 2fveq3 6919 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝐾‘(𝐹‘𝑥)) = (𝐾‘(𝐹‘𝑤))) |
20 | 19, 19 | opeq12d 4889 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉) |
21 | 20, 19 | oveq12d 7456 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥))) = (〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))) |
22 | | 2fveq3 6919 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))) |
23 | | fveq2 6914 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
24 | 23, 23 | oveq12d 7456 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥)𝐿(𝐹‘𝑥)) = ((𝐹‘𝑤)𝐿(𝐹‘𝑤))) |
25 | | fveq2 6914 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤)) |
26 | 24, 25 | fveq12d 6921 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) |
27 | 21, 22, 26 | oveq123d 7459 |
. . . . 5
⊢ (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))) |
28 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶)) |
29 | | ovexd 7473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V) |
30 | 2, 27, 28, 29 | fvmptd3 7046 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))) |
31 | | eqid 2737 |
. . . . . 6
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
32 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
33 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸)) |
34 | 15 | ffvelcdmda 7111 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (𝐹‘𝑤) ∈ (Base‘𝐷)) |
35 | 33, 34 | ffvelcdmd 7112 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹‘𝑤)) ∈ (Base‘𝐸)) |
36 | | eqid 2737 |
. . . . . 6
⊢
(comp‘𝐸) =
(comp‘𝐸) |
37 | 7, 31, 8, 32, 35 | catidcl 17736 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤))) ∈ ((𝐾‘(𝐹‘𝑤))(Hom ‘𝐸)(𝐾‘(𝐹‘𝑤)))) |
38 | 7, 31, 8, 32, 35, 36, 35, 37 | catlid 17737 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
39 | 33, 34 | fvco3d 7016 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
40 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
41 | 40, 28 | fvco3d 7016 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹‘𝑤))) |
42 | 41 | fveq2d 6918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘((Id‘𝐷)‘(𝐹‘𝑤)))) |
43 | | eqid 2737 |
. . . . . . . 8
⊢
(Id‘𝐷) =
(Id‘𝐷) |
44 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿) |
45 | 11, 43, 8, 44, 34 | funcid 17930 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘((Id‘𝐷)‘(𝐹‘𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
46 | 42, 45 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
47 | 39, 46 | oveq12d 7456 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤))))) |
48 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (𝐾 ∘ 𝐹):(Base‘𝐶)⟶(Base‘𝐸)) |
49 | 48, 28 | fvco3d 7016 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾 ∘ 𝐹)‘𝑤))) |
50 | 40, 28 | fvco3d 7016 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((𝐾 ∘ 𝐹)‘𝑤) = (𝐾‘(𝐹‘𝑤))) |
51 | 50 | fveq2d 6918 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾 ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
52 | 49, 51 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
53 | 38, 47, 52 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤)) |
54 | 30, 53 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤)) |
55 | 4, 18, 54 | eqfnfvd 7061 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))) |
56 | | fucoid.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
57 | 56 | fveq2d 6918 |
. . . . . 6
⊢ (𝜑 → ( 1 ‘𝑈) = ( 1 ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
58 | | fucoid.t |
. . . . . . 7
⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
59 | | eqid 2737 |
. . . . . . . 8
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
60 | 5 | funcrcl2 48837 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ Cat) |
61 | 59, 60, 6 | fuccat 18036 |
. . . . . . 7
⊢ (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat) |
62 | | eqid 2737 |
. . . . . . . 8
⊢ (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷) |
63 | 14 | funcrcl2 48837 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ Cat) |
64 | 62, 63, 60 | fuccat 18036 |
. . . . . . 7
⊢ (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat) |
65 | 59 | fucbas 18025 |
. . . . . . 7
⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
66 | 62 | fucbas 18025 |
. . . . . . 7
⊢ (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷)) |
67 | | eqid 2737 |
. . . . . . 7
⊢
(Id‘(𝐷 FuncCat
𝐸)) = (Id‘(𝐷 FuncCat 𝐸)) |
68 | | eqid 2737 |
. . . . . . 7
⊢
(Id‘(𝐶 FuncCat
𝐷)) = (Id‘(𝐶 FuncCat 𝐷)) |
69 | | fucoid.1 |
. . . . . . 7
⊢ 1 =
(Id‘𝑇) |
70 | | df-br 5152 |
. . . . . . . 8
⊢ (𝐾(𝐷 Func 𝐸)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) |
71 | 5, 70 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) |
72 | | df-br 5152 |
. . . . . . . 8
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
73 | 14, 72 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
74 | 58, 61, 64, 65, 66, 67, 68, 69, 71, 73 | xpcid 18254 |
. . . . . 6
⊢ (𝜑 → ( 1 ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) = 〈((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉), ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉)〉) |
75 | 59, 67, 8, 71 | fucid 18037 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉) = ((Id‘𝐸) ∘ (1st ‘〈𝐾, 𝐿〉))) |
76 | | relfunc 17922 |
. . . . . . . . . . . 12
⊢ Rel
(𝐷 Func 𝐸) |
77 | 76 | brrelex1i 5749 |
. . . . . . . . . . 11
⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐾 ∈ V) |
78 | 5, 77 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ V) |
79 | 76 | brrelex2i 5750 |
. . . . . . . . . . 11
⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐿 ∈ V) |
80 | 5, 79 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ V) |
81 | | op1stg 8034 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ V ∧ 𝐿 ∈ V) →
(1st ‘〈𝐾, 𝐿〉) = 𝐾) |
82 | 78, 80, 81 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘〈𝐾, 𝐿〉) = 𝐾) |
83 | 82 | coeq2d 5880 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘𝐸) ∘ (1st
‘〈𝐾, 𝐿〉)) = ((Id‘𝐸) ∘ 𝐾)) |
84 | 75, 83 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉) = ((Id‘𝐸) ∘ 𝐾)) |
85 | 62, 68, 43, 73 | fucid 18037 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉) = ((Id‘𝐷) ∘ (1st ‘〈𝐹, 𝐺〉))) |
86 | | relfunc 17922 |
. . . . . . . . . . . 12
⊢ Rel
(𝐶 Func 𝐷) |
87 | 86 | brrelex1i 5749 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹 ∈ V) |
88 | 14, 87 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
89 | 86 | brrelex2i 5750 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐺 ∈ V) |
90 | 14, 89 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ V) |
91 | | op1stg 8034 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(1st ‘〈𝐹, 𝐺〉) = 𝐹) |
92 | 88, 90, 91 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
93 | 92 | coeq2d 5880 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘𝐷) ∘ (1st
‘〈𝐹, 𝐺〉)) = ((Id‘𝐷) ∘ 𝐹)) |
94 | 85, 93 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉) = ((Id‘𝐷) ∘ 𝐹)) |
95 | 84, 94 | opeq12d 4889 |
. . . . . 6
⊢ (𝜑 → 〈((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉), ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉)〉 = 〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉) |
96 | 57, 74, 95 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → ( 1 ‘𝑈) = 〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉) |
97 | 96 | fveq2d 6918 |
. . . 4
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = ((𝑈𝑃𝑈)‘〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉)) |
98 | | df-ov 7441 |
. . . 4
⊢
(((Id‘𝐸)
∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉) |
99 | 97, 98 | eqtr4di 2795 |
. . 3
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹))) |
100 | | fucoid.o |
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
101 | | eqid 2737 |
. . . . . . 7
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
102 | 62, 101 | fuchom 18026 |
. . . . . 6
⊢ (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷)) |
103 | 66, 102, 68, 64, 73 | catidcl 17736 |
. . . . 5
⊢ (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉) ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝐹, 𝐺〉)) |
104 | 94, 103 | eqeltrrd 2842 |
. . . 4
⊢ (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝐹, 𝐺〉)) |
105 | | eqid 2737 |
. . . . . . 7
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
106 | 59, 105 | fuchom 18026 |
. . . . . 6
⊢ (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸)) |
107 | 65, 106, 67, 61, 71 | catidcl 17736 |
. . . . 5
⊢ (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉) ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝐾, 𝐿〉)) |
108 | 84, 107 | eqeltrrd 2842 |
. . . 4
⊢ (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝐾, 𝐿〉)) |
109 | 100, 56, 56, 104, 108 | fuco22 48906 |
. . 3
⊢ (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))) |
110 | 99, 109 | eqtrd 2777 |
. 2
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))) |
111 | | fucoid.q |
. . 3
⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
112 | | fucoid.i |
. . 3
⊢ 𝐼 = (Id‘𝑄) |
113 | 100, 14, 5, 56, 111, 112, 8 | fuco11id 48903 |
. 2
⊢ (𝜑 → (𝐼‘(𝑂‘𝑈)) = ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))) |
114 | 55, 110, 113 | 3eqtr4d 2787 |
1
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) |