Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid Structured version   Visualization version   GIF version

Theorem fucoid 49243
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49244. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fucoid.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fucoid.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fucoid (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7427 . . . . 5 ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V
2 eqid 2730 . . . . 5 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))
31, 2fnmpti 6669 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)
43a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶))
5 fucoid.k . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
65funcrcl3 48997 . . . . 5 (𝜑𝐸 ∈ Cat)
7 eqid 2730 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 eqid 2730 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
97, 8cidfn 17646 . . . . 5 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
106, 9syl 17 . . . 4 (𝜑 → (Id‘𝐸) Fn (Base‘𝐸))
11 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
1211, 7, 5funcf1 17834 . . . . 5 (𝜑𝐾:(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoid.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
1513, 11, 14funcf1 17834 . . . . 5 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1612, 15fcod 6720 . . . 4 (𝜑 → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
17 fnfco 6732 . . . 4 (((Id‘𝐸) Fn (Base‘𝐸) ∧ (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
1810, 16, 17syl2anc 584 . . 3 (𝜑 → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
19 2fveq3 6870 . . . . . . . 8 (𝑥 = 𝑤 → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑤)))
2019, 19opeq12d 4853 . . . . . . 7 (𝑥 = 𝑤 → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩ = ⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩)
2120, 19oveq12d 7412 . . . . . 6 (𝑥 = 𝑤 → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥))) = (⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤))))
22 2fveq3 6870 . . . . . 6 (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)))
23 fveq2 6865 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2423, 23oveq12d 7412 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑥)𝐿(𝐹𝑥)) = ((𝐹𝑤)𝐿(𝐹𝑤)))
25 fveq2 6865 . . . . . . 7 (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤))
2624, 25fveq12d 6872 . . . . . 6 (𝑥 = 𝑤 → (((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))
2721, 22, 26oveq123d 7415 . . . . 5 (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
28 simpr 484 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶))
29 ovexd 7429 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V)
302, 27, 28, 29fvmptd3 6998 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
31 eqid 2730 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
326adantr 480 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
3312adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
3415ffvelcdmda 7063 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐹𝑤) ∈ (Base‘𝐷))
3533, 34ffvelcdmd 7064 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑤)) ∈ (Base‘𝐸))
36 eqid 2730 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
377, 31, 8, 32, 35catidcl 17649 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))) ∈ ((𝐾‘(𝐹𝑤))(Hom ‘𝐸)(𝐾‘(𝐹𝑤))))
387, 31, 8, 32, 35, 36, 35, 37catlid 17650 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
3933, 34fvco3d 6968 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4015adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
4140, 28fvco3d 6968 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹𝑤)))
4241fveq2d 6869 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))))
43 eqid 2730 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
445adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
4511, 43, 8, 44, 34funcid 17838 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4642, 45eqtrd 2765 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4739, 46oveq12d 7412 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))))
4816adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
4948, 28fvco3d 6968 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)))
5040, 28fvco3d 6968 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑤) = (𝐾‘(𝐹𝑤)))
5150fveq2d 6869 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5249, 51eqtrd 2765 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5338, 47, 523eqtr4d 2775 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
5430, 53eqtrd 2765 . . 3 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
554, 18, 54eqfnfvd 7013 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾𝐹)))
56 fucoid.u . . . . . . 7 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5756fveq2d 6869 . . . . . 6 (𝜑 → ( 1𝑈) = ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
58 fucoid.t . . . . . . 7 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
59 eqid 2730 . . . . . . . 8 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
605funcrcl2 48996 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
6159, 60, 6fuccat 17941 . . . . . . 7 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
62 eqid 2730 . . . . . . . 8 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
6314funcrcl2 48996 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6462, 63, 60fuccat 17941 . . . . . . 7 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
6559fucbas 17931 . . . . . . 7 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
6662fucbas 17931 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷))
67 eqid 2730 . . . . . . 7 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
68 eqid 2730 . . . . . . 7 (Id‘(𝐶 FuncCat 𝐷)) = (Id‘(𝐶 FuncCat 𝐷))
69 fucoid.1 . . . . . . 7 1 = (Id‘𝑇)
70 df-br 5116 . . . . . . . 8 (𝐾(𝐷 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
715, 70sylib 218 . . . . . . 7 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
72 df-br 5116 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7314, 72sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7458, 61, 64, 65, 66, 67, 68, 69, 71, 73xpcid 18156 . . . . . 6 (𝜑 → ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩)
7559, 67, 8, 71fucid 17942 . . . . . . . 8 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)))
76 relfunc 17830 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7776brrelex1i 5702 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐾 ∈ V)
785, 77syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ V)
7976brrelex2i 5703 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐿 ∈ V)
805, 79syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ V)
81 op1stg 7989 . . . . . . . . . 10 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8278, 80, 81syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8382coeq2d 5834 . . . . . . . 8 (𝜑 → ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)) = ((Id‘𝐸) ∘ 𝐾))
8475, 83eqtrd 2765 . . . . . . 7 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ 𝐾))
8562, 68, 43, 73fucid 17942 . . . . . . . 8 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)))
86 relfunc 17830 . . . . . . . . . . . 12 Rel (𝐶 Func 𝐷)
8786brrelex1i 5702 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐹 ∈ V)
8814, 87syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
8986brrelex2i 5703 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐺 ∈ V)
9014, 89syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
91 op1stg 7989 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9288, 90, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9392coeq2d 5834 . . . . . . . 8 (𝜑 → ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = ((Id‘𝐷) ∘ 𝐹))
9485, 93eqtrd 2765 . . . . . . 7 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ 𝐹))
9584, 94opeq12d 4853 . . . . . 6 (𝜑 → ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩ = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9657, 74, 953eqtrd 2769 . . . . 5 (𝜑 → ( 1𝑈) = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9796fveq2d 6869 . . . 4 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩))
98 df-ov 7397 . . . 4 (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9997, 98eqtr4di 2783 . . 3 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)))
100 fucoid.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
101 eqid 2730 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
10262, 101fuchom 17932 . . . . . 6 (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷))
10366, 102, 68, 64, 73catidcl 17649 . . . . 5 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
10494, 103eqeltrrd 2830 . . . 4 (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
105 eqid 2730 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
10659, 105fuchom 17932 . . . . . 6 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10765, 106, 67, 61, 71catidcl 17649 . . . . 5 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
10884, 107eqeltrrd 2830 . . . 4 (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
109100, 56, 56, 104, 108fuco22 49234 . . 3 (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
11099, 109eqtrd 2765 . 2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
111 fucoid.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
112 fucoid.i . . 3 𝐼 = (Id‘𝑄)
113100, 14, 5, 56, 111, 112, 8fuco11id 49229 . 2 (𝜑 → (𝐼‘(𝑂𝑈)) = ((Id‘𝐸) ∘ (𝐾𝐹)))
11455, 110, 1133eqtr4d 2775 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cop 4603   class class class wbr 5115  cmpt 5196  ccom 5650   Fn wfn 6514  wf 6515  cfv 6519  (class class class)co 7394  1st c1st 7975  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632   Func cfunc 17822   Nat cnat 17912   FuncCat cfuc 17913   ×c cxpc 18135  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-nat 17914  df-fuc 17915  df-xpc 18139  df-fuco 49212
This theorem is referenced by:  fucoid2  49244
  Copyright terms: Public domain W3C validator