Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid Structured version   Visualization version   GIF version

Theorem fucoid 49379
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49380. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fucoid.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fucoid.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fucoid (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . . . . 5 ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V
2 eqid 2731 . . . . 5 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))
31, 2fnmpti 6624 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)
43a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶))
5 fucoid.k . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
65funcrcl3 49111 . . . . 5 (𝜑𝐸 ∈ Cat)
7 eqid 2731 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 eqid 2731 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
97, 8cidfn 17582 . . . . 5 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
106, 9syl 17 . . . 4 (𝜑 → (Id‘𝐸) Fn (Base‘𝐸))
11 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
1211, 7, 5funcf1 17770 . . . . 5 (𝜑𝐾:(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2731 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoid.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
1513, 11, 14funcf1 17770 . . . . 5 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1612, 15fcod 6676 . . . 4 (𝜑 → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
17 fnfco 6688 . . . 4 (((Id‘𝐸) Fn (Base‘𝐸) ∧ (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
1810, 16, 17syl2anc 584 . . 3 (𝜑 → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
19 2fveq3 6827 . . . . . . . 8 (𝑥 = 𝑤 → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑤)))
2019, 19opeq12d 4833 . . . . . . 7 (𝑥 = 𝑤 → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩ = ⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩)
2120, 19oveq12d 7364 . . . . . 6 (𝑥 = 𝑤 → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥))) = (⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤))))
22 2fveq3 6827 . . . . . 6 (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)))
23 fveq2 6822 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2423, 23oveq12d 7364 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑥)𝐿(𝐹𝑥)) = ((𝐹𝑤)𝐿(𝐹𝑤)))
25 fveq2 6822 . . . . . . 7 (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤))
2624, 25fveq12d 6829 . . . . . 6 (𝑥 = 𝑤 → (((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))
2721, 22, 26oveq123d 7367 . . . . 5 (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
28 simpr 484 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶))
29 ovexd 7381 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V)
302, 27, 28, 29fvmptd3 6952 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
31 eqid 2731 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
326adantr 480 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
3312adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
3415ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐹𝑤) ∈ (Base‘𝐷))
3533, 34ffvelcdmd 7018 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑤)) ∈ (Base‘𝐸))
36 eqid 2731 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
377, 31, 8, 32, 35catidcl 17585 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))) ∈ ((𝐾‘(𝐹𝑤))(Hom ‘𝐸)(𝐾‘(𝐹𝑤))))
387, 31, 8, 32, 35, 36, 35, 37catlid 17586 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
3933, 34fvco3d 6922 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4015adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
4140, 28fvco3d 6922 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹𝑤)))
4241fveq2d 6826 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))))
43 eqid 2731 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
445adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
4511, 43, 8, 44, 34funcid 17774 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4642, 45eqtrd 2766 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4739, 46oveq12d 7364 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))))
4816adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
4948, 28fvco3d 6922 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)))
5040, 28fvco3d 6922 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑤) = (𝐾‘(𝐹𝑤)))
5150fveq2d 6826 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5249, 51eqtrd 2766 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5338, 47, 523eqtr4d 2776 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
5430, 53eqtrd 2766 . . 3 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
554, 18, 54eqfnfvd 6967 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾𝐹)))
56 fucoid.u . . . . . . 7 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5756fveq2d 6826 . . . . . 6 (𝜑 → ( 1𝑈) = ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
58 fucoid.t . . . . . . 7 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
59 eqid 2731 . . . . . . . 8 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
605funcrcl2 49110 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
6159, 60, 6fuccat 17877 . . . . . . 7 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
62 eqid 2731 . . . . . . . 8 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
6314funcrcl2 49110 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6462, 63, 60fuccat 17877 . . . . . . 7 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
6559fucbas 17867 . . . . . . 7 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
6662fucbas 17867 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷))
67 eqid 2731 . . . . . . 7 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
68 eqid 2731 . . . . . . 7 (Id‘(𝐶 FuncCat 𝐷)) = (Id‘(𝐶 FuncCat 𝐷))
69 fucoid.1 . . . . . . 7 1 = (Id‘𝑇)
70 df-br 5092 . . . . . . . 8 (𝐾(𝐷 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
715, 70sylib 218 . . . . . . 7 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
72 df-br 5092 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7314, 72sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7458, 61, 64, 65, 66, 67, 68, 69, 71, 73xpcid 18092 . . . . . 6 (𝜑 → ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩)
7559, 67, 8, 71fucid 17878 . . . . . . . 8 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)))
76 relfunc 17766 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7776brrelex1i 5672 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐾 ∈ V)
785, 77syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ V)
7976brrelex2i 5673 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐿 ∈ V)
805, 79syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ V)
81 op1stg 7933 . . . . . . . . . 10 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8278, 80, 81syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8382coeq2d 5802 . . . . . . . 8 (𝜑 → ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)) = ((Id‘𝐸) ∘ 𝐾))
8475, 83eqtrd 2766 . . . . . . 7 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ 𝐾))
8562, 68, 43, 73fucid 17878 . . . . . . . 8 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)))
86 relfunc 17766 . . . . . . . . . . . 12 Rel (𝐶 Func 𝐷)
8786brrelex1i 5672 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐹 ∈ V)
8814, 87syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
8986brrelex2i 5673 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐺 ∈ V)
9014, 89syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
91 op1stg 7933 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9288, 90, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9392coeq2d 5802 . . . . . . . 8 (𝜑 → ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = ((Id‘𝐷) ∘ 𝐹))
9485, 93eqtrd 2766 . . . . . . 7 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ 𝐹))
9584, 94opeq12d 4833 . . . . . 6 (𝜑 → ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩ = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9657, 74, 953eqtrd 2770 . . . . 5 (𝜑 → ( 1𝑈) = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9796fveq2d 6826 . . . 4 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩))
98 df-ov 7349 . . . 4 (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9997, 98eqtr4di 2784 . . 3 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)))
100 fucoid.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
101 eqid 2731 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
10262, 101fuchom 17868 . . . . . 6 (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷))
10366, 102, 68, 64, 73catidcl 17585 . . . . 5 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
10494, 103eqeltrrd 2832 . . . 4 (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
105 eqid 2731 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
10659, 105fuchom 17868 . . . . . 6 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10765, 106, 67, 61, 71catidcl 17585 . . . . 5 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
10884, 107eqeltrrd 2832 . . . 4 (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
109100, 56, 56, 104, 108fuco22 49370 . . 3 (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
11099, 109eqtrd 2766 . 2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
111 fucoid.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
112 fucoid.i . . 3 𝐼 = (Id‘𝑄)
113100, 14, 5, 56, 111, 112, 8fuco11id 49365 . 2 (𝜑 → (𝐼‘(𝑂𝑈)) = ((Id‘𝐸) ∘ (𝐾𝐹)))
11455, 110, 1133eqtr4d 2776 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582   class class class wbr 5091  cmpt 5172  ccom 5620   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Idccid 17568   Func cfunc 17758   Nat cnat 17848   FuncCat cfuc 17849   ×c cxpc 18071  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-hom 17182  df-cco 17183  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-nat 17850  df-fuc 17851  df-xpc 18075  df-fuco 49348
This theorem is referenced by:  fucoid2  49380
  Copyright terms: Public domain W3C validator