Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid Structured version   Visualization version   GIF version

Theorem fucoid 49337
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49338. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fucoid.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fucoid.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fucoid (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . . . . 5 ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V
2 eqid 2729 . . . . 5 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))
31, 2fnmpti 6661 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)
43a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶))
5 fucoid.k . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
65funcrcl3 49069 . . . . 5 (𝜑𝐸 ∈ Cat)
7 eqid 2729 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 eqid 2729 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
97, 8cidfn 17640 . . . . 5 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
106, 9syl 17 . . . 4 (𝜑 → (Id‘𝐸) Fn (Base‘𝐸))
11 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
1211, 7, 5funcf1 17828 . . . . 5 (𝜑𝐾:(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoid.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
1513, 11, 14funcf1 17828 . . . . 5 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1612, 15fcod 6713 . . . 4 (𝜑 → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
17 fnfco 6725 . . . 4 (((Id‘𝐸) Fn (Base‘𝐸) ∧ (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
1810, 16, 17syl2anc 584 . . 3 (𝜑 → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
19 2fveq3 6863 . . . . . . . 8 (𝑥 = 𝑤 → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑤)))
2019, 19opeq12d 4845 . . . . . . 7 (𝑥 = 𝑤 → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩ = ⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩)
2120, 19oveq12d 7405 . . . . . 6 (𝑥 = 𝑤 → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥))) = (⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤))))
22 2fveq3 6863 . . . . . 6 (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)))
23 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2423, 23oveq12d 7405 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑥)𝐿(𝐹𝑥)) = ((𝐹𝑤)𝐿(𝐹𝑤)))
25 fveq2 6858 . . . . . . 7 (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤))
2624, 25fveq12d 6865 . . . . . 6 (𝑥 = 𝑤 → (((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))
2721, 22, 26oveq123d 7408 . . . . 5 (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
28 simpr 484 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶))
29 ovexd 7422 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V)
302, 27, 28, 29fvmptd3 6991 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
31 eqid 2729 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
326adantr 480 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
3312adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
3415ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐹𝑤) ∈ (Base‘𝐷))
3533, 34ffvelcdmd 7057 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑤)) ∈ (Base‘𝐸))
36 eqid 2729 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
377, 31, 8, 32, 35catidcl 17643 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))) ∈ ((𝐾‘(𝐹𝑤))(Hom ‘𝐸)(𝐾‘(𝐹𝑤))))
387, 31, 8, 32, 35, 36, 35, 37catlid 17644 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
3933, 34fvco3d 6961 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4015adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
4140, 28fvco3d 6961 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹𝑤)))
4241fveq2d 6862 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))))
43 eqid 2729 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
445adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
4511, 43, 8, 44, 34funcid 17832 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4642, 45eqtrd 2764 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4739, 46oveq12d 7405 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))))
4816adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
4948, 28fvco3d 6961 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)))
5040, 28fvco3d 6961 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑤) = (𝐾‘(𝐹𝑤)))
5150fveq2d 6862 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5249, 51eqtrd 2764 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5338, 47, 523eqtr4d 2774 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
5430, 53eqtrd 2764 . . 3 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
554, 18, 54eqfnfvd 7006 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾𝐹)))
56 fucoid.u . . . . . . 7 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5756fveq2d 6862 . . . . . 6 (𝜑 → ( 1𝑈) = ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
58 fucoid.t . . . . . . 7 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
59 eqid 2729 . . . . . . . 8 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
605funcrcl2 49068 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
6159, 60, 6fuccat 17935 . . . . . . 7 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
62 eqid 2729 . . . . . . . 8 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
6314funcrcl2 49068 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6462, 63, 60fuccat 17935 . . . . . . 7 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
6559fucbas 17925 . . . . . . 7 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
6662fucbas 17925 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷))
67 eqid 2729 . . . . . . 7 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
68 eqid 2729 . . . . . . 7 (Id‘(𝐶 FuncCat 𝐷)) = (Id‘(𝐶 FuncCat 𝐷))
69 fucoid.1 . . . . . . 7 1 = (Id‘𝑇)
70 df-br 5108 . . . . . . . 8 (𝐾(𝐷 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
715, 70sylib 218 . . . . . . 7 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
72 df-br 5108 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7314, 72sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7458, 61, 64, 65, 66, 67, 68, 69, 71, 73xpcid 18150 . . . . . 6 (𝜑 → ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩)
7559, 67, 8, 71fucid 17936 . . . . . . . 8 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)))
76 relfunc 17824 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7776brrelex1i 5694 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐾 ∈ V)
785, 77syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ V)
7976brrelex2i 5695 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐿 ∈ V)
805, 79syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ V)
81 op1stg 7980 . . . . . . . . . 10 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8278, 80, 81syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8382coeq2d 5826 . . . . . . . 8 (𝜑 → ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)) = ((Id‘𝐸) ∘ 𝐾))
8475, 83eqtrd 2764 . . . . . . 7 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ 𝐾))
8562, 68, 43, 73fucid 17936 . . . . . . . 8 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)))
86 relfunc 17824 . . . . . . . . . . . 12 Rel (𝐶 Func 𝐷)
8786brrelex1i 5694 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐹 ∈ V)
8814, 87syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
8986brrelex2i 5695 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐺 ∈ V)
9014, 89syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
91 op1stg 7980 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9288, 90, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9392coeq2d 5826 . . . . . . . 8 (𝜑 → ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = ((Id‘𝐷) ∘ 𝐹))
9485, 93eqtrd 2764 . . . . . . 7 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ 𝐹))
9584, 94opeq12d 4845 . . . . . 6 (𝜑 → ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩ = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9657, 74, 953eqtrd 2768 . . . . 5 (𝜑 → ( 1𝑈) = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9796fveq2d 6862 . . . 4 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩))
98 df-ov 7390 . . . 4 (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9997, 98eqtr4di 2782 . . 3 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)))
100 fucoid.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
101 eqid 2729 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
10262, 101fuchom 17926 . . . . . 6 (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷))
10366, 102, 68, 64, 73catidcl 17643 . . . . 5 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
10494, 103eqeltrrd 2829 . . . 4 (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
105 eqid 2729 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
10659, 105fuchom 17926 . . . . . 6 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10765, 106, 67, 61, 71catidcl 17643 . . . . 5 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
10884, 107eqeltrrd 2829 . . . 4 (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
109100, 56, 56, 104, 108fuco22 49328 . . 3 (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
11099, 109eqtrd 2764 . 2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
111 fucoid.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
112 fucoid.i . . 3 𝐼 = (Id‘𝑄)
113100, 14, 5, 56, 111, 112, 8fuco11id 49323 . 2 (𝜑 → (𝐼‘(𝑂𝑈)) = ((Id‘𝐸) ∘ (𝐾𝐹)))
11455, 110, 1133eqtr4d 2774 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107  cmpt 5188  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626   Func cfunc 17816   Nat cnat 17906   FuncCat cfuc 17907   ×c cxpc 18129  F cfuco 49305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-nat 17908  df-fuc 17909  df-xpc 18133  df-fuco 49306
This theorem is referenced by:  fucoid2  49338
  Copyright terms: Public domain W3C validator