Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid Structured version   Visualization version   GIF version

Theorem fucoid 49003
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49004. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fucoid.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fucoid.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fucoid (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7447 . . . . 5 ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V
2 eqid 2734 . . . . 5 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))
31, 2fnmpti 6692 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)
43a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶))
5 fucoid.k . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
65funcrcl3 48866 . . . . 5 (𝜑𝐸 ∈ Cat)
7 eqid 2734 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 eqid 2734 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
97, 8cidfn 17694 . . . . 5 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
106, 9syl 17 . . . 4 (𝜑 → (Id‘𝐸) Fn (Base‘𝐸))
11 eqid 2734 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
1211, 7, 5funcf1 17883 . . . . 5 (𝜑𝐾:(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2734 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoid.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
1513, 11, 14funcf1 17883 . . . . 5 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1612, 15fcod 6742 . . . 4 (𝜑 → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
17 fnfco 6754 . . . 4 (((Id‘𝐸) Fn (Base‘𝐸) ∧ (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
1810, 16, 17syl2anc 584 . . 3 (𝜑 → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
19 2fveq3 6892 . . . . . . . 8 (𝑥 = 𝑤 → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑤)))
2019, 19opeq12d 4863 . . . . . . 7 (𝑥 = 𝑤 → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩ = ⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩)
2120, 19oveq12d 7432 . . . . . 6 (𝑥 = 𝑤 → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥))) = (⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤))))
22 2fveq3 6892 . . . . . 6 (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)))
23 fveq2 6887 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2423, 23oveq12d 7432 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑥)𝐿(𝐹𝑥)) = ((𝐹𝑤)𝐿(𝐹𝑤)))
25 fveq2 6887 . . . . . . 7 (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤))
2624, 25fveq12d 6894 . . . . . 6 (𝑥 = 𝑤 → (((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))
2721, 22, 26oveq123d 7435 . . . . 5 (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
28 simpr 484 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶))
29 ovexd 7449 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V)
302, 27, 28, 29fvmptd3 7020 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
31 eqid 2734 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
326adantr 480 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
3312adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
3415ffvelcdmda 7085 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐹𝑤) ∈ (Base‘𝐷))
3533, 34ffvelcdmd 7086 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑤)) ∈ (Base‘𝐸))
36 eqid 2734 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
377, 31, 8, 32, 35catidcl 17697 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))) ∈ ((𝐾‘(𝐹𝑤))(Hom ‘𝐸)(𝐾‘(𝐹𝑤))))
387, 31, 8, 32, 35, 36, 35, 37catlid 17698 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
3933, 34fvco3d 6990 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4015adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
4140, 28fvco3d 6990 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹𝑤)))
4241fveq2d 6891 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))))
43 eqid 2734 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
445adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
4511, 43, 8, 44, 34funcid 17887 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4642, 45eqtrd 2769 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4739, 46oveq12d 7432 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))))
4816adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
4948, 28fvco3d 6990 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)))
5040, 28fvco3d 6990 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑤) = (𝐾‘(𝐹𝑤)))
5150fveq2d 6891 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5249, 51eqtrd 2769 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5338, 47, 523eqtr4d 2779 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
5430, 53eqtrd 2769 . . 3 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
554, 18, 54eqfnfvd 7035 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾𝐹)))
56 fucoid.u . . . . . . 7 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5756fveq2d 6891 . . . . . 6 (𝜑 → ( 1𝑈) = ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
58 fucoid.t . . . . . . 7 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
59 eqid 2734 . . . . . . . 8 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
605funcrcl2 48865 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
6159, 60, 6fuccat 17990 . . . . . . 7 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
62 eqid 2734 . . . . . . . 8 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
6314funcrcl2 48865 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6462, 63, 60fuccat 17990 . . . . . . 7 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
6559fucbas 17980 . . . . . . 7 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
6662fucbas 17980 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷))
67 eqid 2734 . . . . . . 7 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
68 eqid 2734 . . . . . . 7 (Id‘(𝐶 FuncCat 𝐷)) = (Id‘(𝐶 FuncCat 𝐷))
69 fucoid.1 . . . . . . 7 1 = (Id‘𝑇)
70 df-br 5126 . . . . . . . 8 (𝐾(𝐷 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
715, 70sylib 218 . . . . . . 7 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
72 df-br 5126 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7314, 72sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7458, 61, 64, 65, 66, 67, 68, 69, 71, 73xpcid 18205 . . . . . 6 (𝜑 → ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩)
7559, 67, 8, 71fucid 17991 . . . . . . . 8 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)))
76 relfunc 17879 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7776brrelex1i 5723 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐾 ∈ V)
785, 77syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ V)
7976brrelex2i 5724 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐿 ∈ V)
805, 79syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ V)
81 op1stg 8009 . . . . . . . . . 10 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8278, 80, 81syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8382coeq2d 5855 . . . . . . . 8 (𝜑 → ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)) = ((Id‘𝐸) ∘ 𝐾))
8475, 83eqtrd 2769 . . . . . . 7 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ 𝐾))
8562, 68, 43, 73fucid 17991 . . . . . . . 8 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)))
86 relfunc 17879 . . . . . . . . . . . 12 Rel (𝐶 Func 𝐷)
8786brrelex1i 5723 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐹 ∈ V)
8814, 87syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
8986brrelex2i 5724 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐺 ∈ V)
9014, 89syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
91 op1stg 8009 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9288, 90, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9392coeq2d 5855 . . . . . . . 8 (𝜑 → ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = ((Id‘𝐷) ∘ 𝐹))
9485, 93eqtrd 2769 . . . . . . 7 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ 𝐹))
9584, 94opeq12d 4863 . . . . . 6 (𝜑 → ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩ = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9657, 74, 953eqtrd 2773 . . . . 5 (𝜑 → ( 1𝑈) = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9796fveq2d 6891 . . . 4 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩))
98 df-ov 7417 . . . 4 (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9997, 98eqtr4di 2787 . . 3 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)))
100 fucoid.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
101 eqid 2734 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
10262, 101fuchom 17981 . . . . . 6 (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷))
10366, 102, 68, 64, 73catidcl 17697 . . . . 5 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
10494, 103eqeltrrd 2834 . . . 4 (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
105 eqid 2734 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
10659, 105fuchom 17981 . . . . . 6 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10765, 106, 67, 61, 71catidcl 17697 . . . . 5 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
10884, 107eqeltrrd 2834 . . . 4 (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
109100, 56, 56, 104, 108fuco22 48994 . . 3 (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
11099, 109eqtrd 2769 . 2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
111 fucoid.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
112 fucoid.i . . 3 𝐼 = (Id‘𝑄)
113100, 14, 5, 56, 111, 112, 8fuco11id 48989 . 2 (𝜑 → (𝐼‘(𝑂𝑈)) = ((Id‘𝐸) ∘ (𝐾𝐹)))
11455, 110, 1133eqtr4d 2779 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  cop 4614   class class class wbr 5125  cmpt 5207  ccom 5671   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7995  Basecbs 17230  Hom chom 17285  compcco 17286  Catccat 17679  Idccid 17680   Func cfunc 17871   Nat cnat 17961   FuncCat cfuc 17962   ×c cxpc 18184  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-cofu 17877  df-nat 17963  df-fuc 17964  df-xpc 18188  df-fuco 48972
This theorem is referenced by:  fucoid2  49004
  Copyright terms: Public domain W3C validator