Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid Structured version   Visualization version   GIF version

Theorem fucoid 48915
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 48916. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fucoid.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fucoid.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
Assertion
Ref Expression
fucoid (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7471 . . . . 5 ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V
2 eqid 2737 . . . . 5 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))
31, 2fnmpti 6719 . . . 4 (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)
43a1i 11 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶))
5 fucoid.k . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
65funcrcl3 48838 . . . . 5 (𝜑𝐸 ∈ Cat)
7 eqid 2737 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 eqid 2737 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
97, 8cidfn 17733 . . . . 5 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
106, 9syl 17 . . . 4 (𝜑 → (Id‘𝐸) Fn (Base‘𝐸))
11 eqid 2737 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
1211, 7, 5funcf1 17926 . . . . 5 (𝜑𝐾:(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoid.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
1513, 11, 14funcf1 17926 . . . . 5 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
1612, 15fcod 6769 . . . 4 (𝜑 → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
17 fnfco 6781 . . . 4 (((Id‘𝐸) Fn (Base‘𝐸) ∧ (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
1810, 16, 17syl2anc 584 . . 3 (𝜑 → ((Id‘𝐸) ∘ (𝐾𝐹)) Fn (Base‘𝐶))
19 2fveq3 6919 . . . . . . . 8 (𝑥 = 𝑤 → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑤)))
2019, 19opeq12d 4889 . . . . . . 7 (𝑥 = 𝑤 → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩ = ⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩)
2120, 19oveq12d 7456 . . . . . 6 (𝑥 = 𝑤 → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥))) = (⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤))))
22 2fveq3 6919 . . . . . 6 (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)))
23 fveq2 6914 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2423, 23oveq12d 7456 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑥)𝐿(𝐹𝑥)) = ((𝐹𝑤)𝐿(𝐹𝑤)))
25 fveq2 6914 . . . . . . 7 (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤))
2624, 25fveq12d 6921 . . . . . 6 (𝑥 = 𝑤 → (((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))
2721, 22, 26oveq123d 7459 . . . . 5 (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
28 simpr 484 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶))
29 ovexd 7473 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V)
302, 27, 28, 29fvmptd3 7046 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))))
31 eqid 2737 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
326adantr 480 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
3312adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
3415ffvelcdmda 7111 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐹𝑤) ∈ (Base‘𝐷))
3533, 34ffvelcdmd 7112 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑤)) ∈ (Base‘𝐸))
36 eqid 2737 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
377, 31, 8, 32, 35catidcl 17736 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))) ∈ ((𝐾‘(𝐹𝑤))(Hom ‘𝐸)(𝐾‘(𝐹𝑤))))
387, 31, 8, 32, 35, 36, 35, 37catlid 17737 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
3933, 34fvco3d 7016 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4015adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
4140, 28fvco3d 7016 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹𝑤)))
4241fveq2d 6918 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))))
43 eqid 2737 . . . . . . . 8 (Id‘𝐷) = (Id‘𝐷)
445adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
4511, 43, 8, 44, 34funcid 17930 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘((Id‘𝐷)‘(𝐹𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4642, 45eqtrd 2777 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
4739, 46oveq12d 7456 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹𝑤)))))
4816adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → (𝐾𝐹):(Base‘𝐶)⟶(Base‘𝐸))
4948, 28fvco3d 7016 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)))
5040, 28fvco3d 7016 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑤) = (𝐾‘(𝐹𝑤)))
5150fveq2d 6918 . . . . . 6 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5249, 51eqtrd 2777 . . . . 5 ((𝜑𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹𝑤))))
5338, 47, 523eqtr4d 2787 . . . 4 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑤))(⟨(𝐾‘(𝐹𝑤)), (𝐾‘(𝐹𝑤))⟩(comp‘𝐸)(𝐾‘(𝐹𝑤)))(((𝐹𝑤)𝐿(𝐹𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
5430, 53eqtrd 2777 . . 3 ((𝜑𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾𝐹))‘𝑤))
554, 18, 54eqfnfvd 7061 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾𝐹)))
56 fucoid.u . . . . . . 7 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5756fveq2d 6918 . . . . . 6 (𝜑 → ( 1𝑈) = ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
58 fucoid.t . . . . . . 7 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
59 eqid 2737 . . . . . . . 8 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
605funcrcl2 48837 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
6159, 60, 6fuccat 18036 . . . . . . 7 (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat)
62 eqid 2737 . . . . . . . 8 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
6314funcrcl2 48837 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6462, 63, 60fuccat 18036 . . . . . . 7 (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat)
6559fucbas 18025 . . . . . . 7 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
6662fucbas 18025 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷))
67 eqid 2737 . . . . . . 7 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
68 eqid 2737 . . . . . . 7 (Id‘(𝐶 FuncCat 𝐷)) = (Id‘(𝐶 FuncCat 𝐷))
69 fucoid.1 . . . . . . 7 1 = (Id‘𝑇)
70 df-br 5152 . . . . . . . 8 (𝐾(𝐷 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
715, 70sylib 218 . . . . . . 7 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
72 df-br 5152 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7314, 72sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
7458, 61, 64, 65, 66, 67, 68, 69, 71, 73xpcid 18254 . . . . . 6 (𝜑 → ( 1 ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩)
7559, 67, 8, 71fucid 18037 . . . . . . . 8 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)))
76 relfunc 17922 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7776brrelex1i 5749 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐾 ∈ V)
785, 77syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ V)
7976brrelex2i 5750 . . . . . . . . . . 11 (𝐾(𝐷 Func 𝐸)𝐿𝐿 ∈ V)
805, 79syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ V)
81 op1stg 8034 . . . . . . . . . 10 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8278, 80, 81syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
8382coeq2d 5880 . . . . . . . 8 (𝜑 → ((Id‘𝐸) ∘ (1st ‘⟨𝐾, 𝐿⟩)) = ((Id‘𝐸) ∘ 𝐾))
8475, 83eqtrd 2777 . . . . . . 7 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) = ((Id‘𝐸) ∘ 𝐾))
8562, 68, 43, 73fucid 18037 . . . . . . . 8 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)))
86 relfunc 17922 . . . . . . . . . . . 12 Rel (𝐶 Func 𝐷)
8786brrelex1i 5749 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐹 ∈ V)
8814, 87syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
8986brrelex2i 5750 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺𝐺 ∈ V)
9014, 89syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
91 op1stg 8034 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9288, 90, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9392coeq2d 5880 . . . . . . . 8 (𝜑 → ((Id‘𝐷) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = ((Id‘𝐷) ∘ 𝐹))
9485, 93eqtrd 2777 . . . . . . 7 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) = ((Id‘𝐷) ∘ 𝐹))
9584, 94opeq12d 4889 . . . . . 6 (𝜑 → ⟨((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩), ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩)⟩ = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9657, 74, 953eqtrd 2781 . . . . 5 (𝜑 → ( 1𝑈) = ⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9796fveq2d 6918 . . . 4 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩))
98 df-ov 7441 . . . 4 (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘⟨((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)⟩)
9997, 98eqtr4di 2795 . . 3 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)))
100 fucoid.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
101 eqid 2737 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
10262, 101fuchom 18026 . . . . . 6 (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷))
10366, 102, 68, 64, 73catidcl 17736 . . . . 5 (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘⟨𝐹, 𝐺⟩) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
10494, 103eqeltrrd 2842 . . . 4 (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝐹, 𝐺⟩))
105 eqid 2737 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
10659, 105fuchom 18026 . . . . . 6 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10765, 106, 67, 61, 71catidcl 17736 . . . . 5 (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘⟨𝐾, 𝐿⟩) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
10884, 107eqeltrrd 2842 . . . 4 (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝐾, 𝐿⟩))
109100, 56, 56, 104, 108fuco22 48906 . . 3 (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
11099, 109eqtrd 2777 . 2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝐹𝑥))⟩(comp‘𝐸)(𝐾‘(𝐹𝑥)))(((𝐹𝑥)𝐿(𝐹𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))))
111 fucoid.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
112 fucoid.i . . 3 𝐼 = (Id‘𝑄)
113100, 14, 5, 56, 111, 112, 8fuco11id 48903 . 2 (𝜑 → (𝐼‘(𝑂𝑈)) = ((Id‘𝐸) ∘ (𝐾𝐹)))
11455, 110, 1133eqtr4d 2787 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cop 4640   class class class wbr 5151  cmpt 5234  ccom 5697   Fn wfn 6564  wf 6565  cfv 6569  (class class class)co 7438  1st c1st 8020  Basecbs 17254  Hom chom 17318  compcco 17319  Catccat 17718  Idccid 17719   Func cfunc 17914   Nat cnat 18005   FuncCat cfuc 18006   ×c cxpc 18233  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-hom 17331  df-cco 17332  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920  df-nat 18007  df-fuc 18008  df-xpc 18237  df-fuco 48886
This theorem is referenced by:  fucoid2  48916
  Copyright terms: Public domain W3C validator