| Step | Hyp | Ref
| Expression |
| 1 | | ovex 7447 |
. . . . 5
⊢
((((Id‘𝐸)
∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) ∈ V |
| 2 | | eqid 2734 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) |
| 3 | 1, 2 | fnmpti 6692 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶) |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) Fn (Base‘𝐶)) |
| 5 | | fucoid.k |
. . . . . 6
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| 6 | 5 | funcrcl3 48866 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 7 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 8 | | eqid 2734 |
. . . . . 6
⊢
(Id‘𝐸) =
(Id‘𝐸) |
| 9 | 7, 8 | cidfn 17694 |
. . . . 5
⊢ (𝐸 ∈ Cat →
(Id‘𝐸) Fn
(Base‘𝐸)) |
| 10 | 6, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (Id‘𝐸) Fn (Base‘𝐸)) |
| 11 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 12 | 11, 7, 5 | funcf1 17883 |
. . . . 5
⊢ (𝜑 → 𝐾:(Base‘𝐷)⟶(Base‘𝐸)) |
| 13 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 14 | | fucoid.f |
. . . . . 6
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 15 | 13, 11, 14 | funcf1 17883 |
. . . . 5
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 16 | 12, 15 | fcod 6742 |
. . . 4
⊢ (𝜑 → (𝐾 ∘ 𝐹):(Base‘𝐶)⟶(Base‘𝐸)) |
| 17 | | fnfco 6754 |
. . . 4
⊢
(((Id‘𝐸) Fn
(Base‘𝐸) ∧ (𝐾 ∘ 𝐹):(Base‘𝐶)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹)) Fn (Base‘𝐶)) |
| 18 | 10, 16, 17 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹)) Fn (Base‘𝐶)) |
| 19 | | 2fveq3 6892 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝐾‘(𝐹‘𝑥)) = (𝐾‘(𝐹‘𝑤))) |
| 20 | 19, 19 | opeq12d 4863 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉) |
| 21 | 20, 19 | oveq12d 7432 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥))) = (〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))) |
| 22 | | 2fveq3 6892 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥)) = (((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))) |
| 23 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 24 | 23, 23 | oveq12d 7432 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥)𝐿(𝐹‘𝑥)) = ((𝐹‘𝑤)𝐿(𝐹‘𝑤))) |
| 25 | | fveq2 6887 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (((Id‘𝐷) ∘ 𝐹)‘𝑥) = (((Id‘𝐷) ∘ 𝐹)‘𝑤)) |
| 26 | 24, 25 | fveq12d 6894 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)) = (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) |
| 27 | 21, 22, 26 | oveq123d 7435 |
. . . . 5
⊢ (𝑥 = 𝑤 → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))) |
| 28 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶)) |
| 29 | | ovexd 7449 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) ∈ V) |
| 30 | 2, 27, 28, 29 | fvmptd3 7020 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)))) |
| 31 | | eqid 2734 |
. . . . . 6
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 32 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
| 33 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸)) |
| 34 | 15 | ffvelcdmda 7085 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (𝐹‘𝑤) ∈ (Base‘𝐷)) |
| 35 | 33, 34 | ffvelcdmd 7086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (𝐾‘(𝐹‘𝑤)) ∈ (Base‘𝐸)) |
| 36 | | eqid 2734 |
. . . . . 6
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 37 | 7, 31, 8, 32, 35 | catidcl 17697 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤))) ∈ ((𝐾‘(𝐹‘𝑤))(Hom ‘𝐸)(𝐾‘(𝐹‘𝑤)))) |
| 38 | 7, 31, 8, 32, 35, 36, 35, 37 | catlid 17698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
| 39 | 33, 34 | fvco3d 6990 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
| 40 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 41 | 40, 28 | fvco3d 6990 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ 𝐹)‘𝑤) = ((Id‘𝐷)‘(𝐹‘𝑤))) |
| 42 | 41 | fveq2d 6891 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘((Id‘𝐷)‘(𝐹‘𝑤)))) |
| 43 | | eqid 2734 |
. . . . . . . 8
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 44 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿) |
| 45 | 11, 43, 8, 44, 34 | funcid 17887 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘((Id‘𝐷)‘(𝐹‘𝑤))) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
| 46 | 42, 45 | eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
| 47 | 39, 46 | oveq12d 7432 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤))))) |
| 48 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (𝐾 ∘ 𝐹):(Base‘𝐶)⟶(Base‘𝐸)) |
| 49 | 48, 28 | fvco3d 6990 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤) = ((Id‘𝐸)‘((𝐾 ∘ 𝐹)‘𝑤))) |
| 50 | 40, 28 | fvco3d 6990 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((𝐾 ∘ 𝐹)‘𝑤) = (𝐾‘(𝐹‘𝑤))) |
| 51 | 50 | fveq2d 6891 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((𝐾 ∘ 𝐹)‘𝑤)) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
| 52 | 49, 51 | eqtrd 2769 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤) = ((Id‘𝐸)‘(𝐾‘(𝐹‘𝑤)))) |
| 53 | 38, 47, 52 | 3eqtr4d 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑤))(〈(𝐾‘(𝐹‘𝑤)), (𝐾‘(𝐹‘𝑤))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑤)))(((𝐹‘𝑤)𝐿(𝐹‘𝑤))‘(((Id‘𝐷) ∘ 𝐹)‘𝑤))) = (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤)) |
| 54 | 30, 53 | eqtrd 2769 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))‘𝑤) = (((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))‘𝑤)) |
| 55 | 4, 18, 54 | eqfnfvd 7035 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥)))) = ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))) |
| 56 | | fucoid.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 57 | 56 | fveq2d 6891 |
. . . . . 6
⊢ (𝜑 → ( 1 ‘𝑈) = ( 1 ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 58 | | fucoid.t |
. . . . . . 7
⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| 59 | | eqid 2734 |
. . . . . . . 8
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
| 60 | 5 | funcrcl2 48865 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 61 | 59, 60, 6 | fuccat 17990 |
. . . . . . 7
⊢ (𝜑 → (𝐷 FuncCat 𝐸) ∈ Cat) |
| 62 | | eqid 2734 |
. . . . . . . 8
⊢ (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷) |
| 63 | 14 | funcrcl2 48865 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 64 | 62, 63, 60 | fuccat 17990 |
. . . . . . 7
⊢ (𝜑 → (𝐶 FuncCat 𝐷) ∈ Cat) |
| 65 | 59 | fucbas 17980 |
. . . . . . 7
⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
| 66 | 62 | fucbas 17980 |
. . . . . . 7
⊢ (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷)) |
| 67 | | eqid 2734 |
. . . . . . 7
⊢
(Id‘(𝐷 FuncCat
𝐸)) = (Id‘(𝐷 FuncCat 𝐸)) |
| 68 | | eqid 2734 |
. . . . . . 7
⊢
(Id‘(𝐶 FuncCat
𝐷)) = (Id‘(𝐶 FuncCat 𝐷)) |
| 69 | | fucoid.1 |
. . . . . . 7
⊢ 1 =
(Id‘𝑇) |
| 70 | | df-br 5126 |
. . . . . . . 8
⊢ (𝐾(𝐷 Func 𝐸)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) |
| 71 | 5, 70 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) |
| 72 | | df-br 5126 |
. . . . . . . 8
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 73 | 14, 72 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 74 | 58, 61, 64, 65, 66, 67, 68, 69, 71, 73 | xpcid 18205 |
. . . . . 6
⊢ (𝜑 → ( 1 ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) = 〈((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉), ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉)〉) |
| 75 | 59, 67, 8, 71 | fucid 17991 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉) = ((Id‘𝐸) ∘ (1st ‘〈𝐾, 𝐿〉))) |
| 76 | | relfunc 17879 |
. . . . . . . . . . . 12
⊢ Rel
(𝐷 Func 𝐸) |
| 77 | 76 | brrelex1i 5723 |
. . . . . . . . . . 11
⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐾 ∈ V) |
| 78 | 5, 77 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ V) |
| 79 | 76 | brrelex2i 5724 |
. . . . . . . . . . 11
⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐿 ∈ V) |
| 80 | 5, 79 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ V) |
| 81 | | op1stg 8009 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ V ∧ 𝐿 ∈ V) →
(1st ‘〈𝐾, 𝐿〉) = 𝐾) |
| 82 | 78, 80, 81 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘〈𝐾, 𝐿〉) = 𝐾) |
| 83 | 82 | coeq2d 5855 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘𝐸) ∘ (1st
‘〈𝐾, 𝐿〉)) = ((Id‘𝐸) ∘ 𝐾)) |
| 84 | 75, 83 | eqtrd 2769 |
. . . . . . 7
⊢ (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉) = ((Id‘𝐸) ∘ 𝐾)) |
| 85 | 62, 68, 43, 73 | fucid 17991 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉) = ((Id‘𝐷) ∘ (1st ‘〈𝐹, 𝐺〉))) |
| 86 | | relfunc 17879 |
. . . . . . . . . . . 12
⊢ Rel
(𝐶 Func 𝐷) |
| 87 | 86 | brrelex1i 5723 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹 ∈ V) |
| 88 | 14, 87 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
| 89 | 86 | brrelex2i 5724 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐺 ∈ V) |
| 90 | 14, 89 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ V) |
| 91 | | op1stg 8009 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 92 | 88, 90, 91 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
| 93 | 92 | coeq2d 5855 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘𝐷) ∘ (1st
‘〈𝐹, 𝐺〉)) = ((Id‘𝐷) ∘ 𝐹)) |
| 94 | 85, 93 | eqtrd 2769 |
. . . . . . 7
⊢ (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉) = ((Id‘𝐷) ∘ 𝐹)) |
| 95 | 84, 94 | opeq12d 4863 |
. . . . . 6
⊢ (𝜑 → 〈((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉), ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉)〉 = 〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉) |
| 96 | 57, 74, 95 | 3eqtrd 2773 |
. . . . 5
⊢ (𝜑 → ( 1 ‘𝑈) = 〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉) |
| 97 | 96 | fveq2d 6891 |
. . . 4
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = ((𝑈𝑃𝑈)‘〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉)) |
| 98 | | df-ov 7417 |
. . . 4
⊢
(((Id‘𝐸)
∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = ((𝑈𝑃𝑈)‘〈((Id‘𝐸) ∘ 𝐾), ((Id‘𝐷) ∘ 𝐹)〉) |
| 99 | 97, 98 | eqtr4di 2787 |
. . 3
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹))) |
| 100 | | fucoid.o |
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 101 | | eqid 2734 |
. . . . . . 7
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
| 102 | 62, 101 | fuchom 17981 |
. . . . . 6
⊢ (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷)) |
| 103 | 66, 102, 68, 64, 73 | catidcl 17697 |
. . . . 5
⊢ (𝜑 → ((Id‘(𝐶 FuncCat 𝐷))‘〈𝐹, 𝐺〉) ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝐹, 𝐺〉)) |
| 104 | 94, 103 | eqeltrrd 2834 |
. . . 4
⊢ (𝜑 → ((Id‘𝐷) ∘ 𝐹) ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝐹, 𝐺〉)) |
| 105 | | eqid 2734 |
. . . . . . 7
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
| 106 | 59, 105 | fuchom 17981 |
. . . . . 6
⊢ (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸)) |
| 107 | 65, 106, 67, 61, 71 | catidcl 17697 |
. . . . 5
⊢ (𝜑 → ((Id‘(𝐷 FuncCat 𝐸))‘〈𝐾, 𝐿〉) ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝐾, 𝐿〉)) |
| 108 | 84, 107 | eqeltrrd 2834 |
. . . 4
⊢ (𝜑 → ((Id‘𝐸) ∘ 𝐾) ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝐾, 𝐿〉)) |
| 109 | 100, 56, 56, 104, 108 | fuco22 48994 |
. . 3
⊢ (𝜑 → (((Id‘𝐸) ∘ 𝐾)(𝑈𝑃𝑈)((Id‘𝐷) ∘ 𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))) |
| 110 | 99, 109 | eqtrd 2769 |
. 2
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((Id‘𝐸) ∘ 𝐾)‘(𝐹‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝐹‘𝑥))〉(comp‘𝐸)(𝐾‘(𝐹‘𝑥)))(((𝐹‘𝑥)𝐿(𝐹‘𝑥))‘(((Id‘𝐷) ∘ 𝐹)‘𝑥))))) |
| 111 | | fucoid.q |
. . 3
⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| 112 | | fucoid.i |
. . 3
⊢ 𝐼 = (Id‘𝑄) |
| 113 | 100, 14, 5, 56, 111, 112, 8 | fuco11id 48989 |
. 2
⊢ (𝜑 → (𝐼‘(𝑂‘𝑈)) = ((Id‘𝐸) ∘ (𝐾 ∘ 𝐹))) |
| 114 | 55, 110, 113 | 3eqtr4d 2779 |
1
⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) |