![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpuptf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Ref | Expression |
---|---|
frgpuptf | ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.a | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | 1 | ffvelrnda 6608 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ 𝐵) |
3 | 2 | adantrr 710 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝐹‘𝑦) ∈ 𝐵) |
4 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
5 | 4 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 𝐻 ∈ Grp) |
6 | frgpup.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
7 | frgpup.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐻) | |
8 | 6, 7 | grpinvcl 17821 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑦) ∈ 𝐵) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
9 | 5, 3, 8 | syl2anc 581 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
10 | 3, 9 | ifcld 4351 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
11 | 10 | ralrimivva 3180 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
12 | frgpup.t | . . 3 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
13 | 12 | fmpt2 7500 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵 ↔ 𝑇:(𝐼 × 2o)⟶𝐵) |
14 | 11, 13 | sylib 210 | 1 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3117 ∅c0 4144 ifcif 4306 × cxp 5340 ⟶wf 6119 ‘cfv 6123 ↦ cmpt2 6907 2oc2o 7820 Basecbs 16222 Grpcgrp 17776 invgcminusg 17777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 |
This theorem is referenced by: frgpuplem 18538 frgpupf 18539 frgpup1 18541 frgpup2 18542 frgpup3lem 18543 |
Copyright terms: Public domain | W3C validator |