MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptf Structured version   Visualization version   GIF version

Theorem frgpuptf 19789
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
Assertion
Ref Expression
frgpuptf (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem frgpuptf
StepHypRef Expression
1 frgpup.a . . . . . 6 (𝜑𝐹:𝐼𝐵)
21ffvelcdmda 7103 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ 𝐵)
32adantrr 717 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝐹𝑦) ∈ 𝐵)
4 frgpup.h . . . . 5 (𝜑𝐻 ∈ Grp)
5 frgpup.b . . . . . 6 𝐵 = (Base‘𝐻)
6 frgpup.n . . . . . 6 𝑁 = (invg𝐻)
75, 6grpinvcl 19006 . . . . 5 ((𝐻 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
84, 3, 7syl2an2r 685 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
93, 8ifcld 4571 . . 3 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
109ralrimivva 3201 . 2 (𝜑 → ∀𝑦𝐼𝑧 ∈ 2o if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
1211fmpo 8094 . 2 (∀𝑦𝐼𝑧 ∈ 2o if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵𝑇:(𝐼 × 2o)⟶𝐵)
1310, 12sylib 218 1 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  c0 4332  ifcif 4524   × cxp 5682  wf 6556  cfv 6560  cmpo 7434  2oc2o 8501  Basecbs 17248  Grpcgrp 18952  invgcminusg 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956
This theorem is referenced by:  frgpuplem  19791  frgpupf  19792  frgpup1  19794  frgpup2  19795  frgpup3lem  19796
  Copyright terms: Public domain W3C validator