Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpuptf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Ref | Expression |
---|---|
frgpuptf | ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.a | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | 1 | ffvelrnda 6961 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ 𝐵) |
3 | 2 | adantrr 714 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝐹‘𝑦) ∈ 𝐵) |
4 | frgpup.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
5 | frgpup.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
6 | frgpup.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐻) | |
7 | 5, 6 | grpinvcl 18627 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑦) ∈ 𝐵) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
8 | 4, 3, 7 | syl2an2r 682 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
9 | 3, 8 | ifcld 4505 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
10 | 9 | ralrimivva 3123 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
11 | frgpup.t | . . 3 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
12 | 11 | fmpo 7908 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵 ↔ 𝑇:(𝐼 × 2o)⟶𝐵) |
13 | 10, 12 | sylib 217 | 1 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∅c0 4256 ifcif 4459 × cxp 5587 ⟶wf 6429 ‘cfv 6433 ∈ cmpo 7277 2oc2o 8291 Basecbs 16912 Grpcgrp 18577 invgcminusg 18578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 |
This theorem is referenced by: frgpuplem 19378 frgpupf 19379 frgpup1 19381 frgpup2 19382 frgpup3lem 19383 |
Copyright terms: Public domain | W3C validator |