MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptf Structured version   Visualization version   GIF version

Theorem frgpuptf 19700
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
Assertion
Ref Expression
frgpuptf (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem frgpuptf
StepHypRef Expression
1 frgpup.a . . . . . 6 (𝜑𝐹:𝐼𝐵)
21ffvelcdmda 7056 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ 𝐵)
32adantrr 717 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝐹𝑦) ∈ 𝐵)
4 frgpup.h . . . . 5 (𝜑𝐻 ∈ Grp)
5 frgpup.b . . . . . 6 𝐵 = (Base‘𝐻)
6 frgpup.n . . . . . 6 𝑁 = (invg𝐻)
75, 6grpinvcl 18919 . . . . 5 ((𝐻 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
84, 3, 7syl2an2r 685 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
93, 8ifcld 4535 . . 3 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
109ralrimivva 3180 . 2 (𝜑 → ∀𝑦𝐼𝑧 ∈ 2o if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
1211fmpo 8047 . 2 (∀𝑦𝐼𝑧 ∈ 2o if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵𝑇:(𝐼 × 2o)⟶𝐵)
1310, 12sylib 218 1 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4296  ifcif 4488   × cxp 5636  wf 6507  cfv 6511  cmpo 7389  2oc2o 8428  Basecbs 17179  Grpcgrp 18865  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869
This theorem is referenced by:  frgpuplem  19702  frgpupf  19703  frgpup1  19705  frgpup2  19706  frgpup3lem  19707
  Copyright terms: Public domain W3C validator