MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptf Structured version   Visualization version   GIF version

Theorem frgpuptf 19803
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
Assertion
Ref Expression
frgpuptf (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem frgpuptf
StepHypRef Expression
1 frgpup.a . . . . . 6 (𝜑𝐹:𝐼𝐵)
21ffvelcdmda 7104 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ 𝐵)
32adantrr 717 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝐹𝑦) ∈ 𝐵)
4 frgpup.h . . . . 5 (𝜑𝐻 ∈ Grp)
5 frgpup.b . . . . . 6 𝐵 = (Base‘𝐻)
6 frgpup.n . . . . . 6 𝑁 = (invg𝐻)
75, 6grpinvcl 19018 . . . . 5 ((𝐻 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
84, 3, 7syl2an2r 685 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
93, 8ifcld 4577 . . 3 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2o)) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
109ralrimivva 3200 . 2 (𝜑 → ∀𝑦𝐼𝑧 ∈ 2o if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
1211fmpo 8092 . 2 (∀𝑦𝐼𝑧 ∈ 2o if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵𝑇:(𝐼 × 2o)⟶𝐵)
1310, 12sylib 218 1 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  c0 4339  ifcif 4531   × cxp 5687  wf 6559  cfv 6563  cmpo 7433  2oc2o 8499  Basecbs 17245  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  frgpuplem  19805  frgpupf  19806  frgpup1  19808  frgpup2  19809  frgpup3lem  19810
  Copyright terms: Public domain W3C validator