| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpuptf | Structured version Visualization version GIF version | ||
| Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| Ref | Expression |
|---|---|
| frgpuptf | ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.a | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 2 | 1 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ 𝐵) |
| 3 | 2 | adantrr 717 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝐹‘𝑦) ∈ 𝐵) |
| 4 | frgpup.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 5 | frgpup.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
| 6 | frgpup.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐻) | |
| 7 | 5, 6 | grpinvcl 18919 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑦) ∈ 𝐵) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
| 8 | 4, 3, 7 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
| 9 | 3, 8 | ifcld 4535 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
| 10 | 9 | ralrimivva 3180 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
| 11 | frgpup.t | . . 3 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 12 | 11 | fmpo 8047 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵 ↔ 𝑇:(𝐼 × 2o)⟶𝐵) |
| 13 | 10, 12 | sylib 218 | 1 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 ifcif 4488 × cxp 5636 ⟶wf 6507 ‘cfv 6511 ∈ cmpo 7389 2oc2o 8428 Basecbs 17179 Grpcgrp 18865 invgcminusg 18866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 |
| This theorem is referenced by: frgpuplem 19702 frgpupf 19703 frgpup1 19705 frgpup2 19706 frgpup3lem 19707 |
| Copyright terms: Public domain | W3C validator |