| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcdmnn0supp | Structured version Visualization version GIF version | ||
| Description: Two ways to write the support of a function into ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| fcdmnn0supp | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11227 | . . . 4 ⊢ 0 ∈ V | |
| 2 | fsuppeq 8172 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 0 ∈ V) → (𝐹:𝐼⟶ℕ0 → (𝐹 supp 0) = (◡𝐹 “ (ℕ0 ∖ {0})))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶ℕ0 → (𝐹 supp 0) = (◡𝐹 “ (ℕ0 ∖ {0})))) |
| 4 | 3 | imp 406 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ (ℕ0 ∖ {0}))) |
| 5 | dfn2 12512 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 6 | 5 | imaeq2i 6045 | . 2 ⊢ (◡𝐹 “ ℕ) = (◡𝐹 “ (ℕ0 ∖ {0})) |
| 7 | 4, 6 | eqtr4di 2788 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 {csn 4601 ◡ccnv 5653 “ cima 5657 ⟶wf 6526 (class class class)co 7403 supp csupp 8157 0cc0 11127 ℕcn 12238 ℕ0cn0 12499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-nn 12239 df-n0 12500 |
| This theorem is referenced by: mplcoe5 21996 mplbas2 21998 ltbwe 22000 eulerpartlems 34338 eulerpartlemb 34346 eulerpartgbij 34350 |
| Copyright terms: Public domain | W3C validator |