MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcdmnn0supp Structured version   Visualization version   GIF version

Theorem fcdmnn0supp 12438
Description: Two ways to write the support of a function into 0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.)
Assertion
Ref Expression
fcdmnn0supp ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))

Proof of Theorem fcdmnn0supp
StepHypRef Expression
1 c0ex 11106 . . . 4 0 ∈ V
2 fsuppeq 8105 . . . 4 ((𝐼𝑉 ∧ 0 ∈ V) → (𝐹:𝐼⟶ℕ0 → (𝐹 supp 0) = (𝐹 “ (ℕ0 ∖ {0}))))
31, 2mpan2 691 . . 3 (𝐼𝑉 → (𝐹:𝐼⟶ℕ0 → (𝐹 supp 0) = (𝐹 “ (ℕ0 ∖ {0}))))
43imp 406 . 2 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ (ℕ0 ∖ {0})))
5 dfn2 12394 . . 3 ℕ = (ℕ0 ∖ {0})
65imaeq2i 6006 . 2 (𝐹 “ ℕ) = (𝐹 “ (ℕ0 ∖ {0}))
74, 6eqtr4di 2784 1 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  {csn 4573  ccnv 5613  cima 5617  wf 6477  (class class class)co 7346   supp csupp 8090  0cc0 11006  cn 12125  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-nn 12126  df-n0 12382
This theorem is referenced by:  mplcoe5  21975  mplbas2  21977  ltbwe  21979  eulerpartlems  34373  eulerpartlemb  34381  eulerpartgbij  34385
  Copyright terms: Public domain W3C validator