| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcdmnn0supp | Structured version Visualization version GIF version | ||
| Description: Two ways to write the support of a function into ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| fcdmnn0supp | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11255 | . . . 4 ⊢ 0 ∈ V | |
| 2 | fsuppeq 8200 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 0 ∈ V) → (𝐹:𝐼⟶ℕ0 → (𝐹 supp 0) = (◡𝐹 “ (ℕ0 ∖ {0})))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶ℕ0 → (𝐹 supp 0) = (◡𝐹 “ (ℕ0 ∖ {0})))) |
| 4 | 3 | imp 406 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ (ℕ0 ∖ {0}))) |
| 5 | dfn2 12539 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 6 | 5 | imaeq2i 6076 | . 2 ⊢ (◡𝐹 “ ℕ) = (◡𝐹 “ (ℕ0 ∖ {0})) |
| 7 | 4, 6 | eqtr4di 2795 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 {csn 4626 ◡ccnv 5684 “ cima 5688 ⟶wf 6557 (class class class)co 7431 supp csupp 8185 0cc0 11155 ℕcn 12266 ℕ0cn0 12526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-nn 12267 df-n0 12527 |
| This theorem is referenced by: mplcoe5 22058 mplbas2 22060 ltbwe 22062 eulerpartlems 34362 eulerpartlemb 34370 eulerpartgbij 34374 |
| Copyright terms: Public domain | W3C validator |