Proof of Theorem fuco22natlem2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2734 | 
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) | 
| 2 |   | eqid 2734 | 
. . 3
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) | 
| 3 |   | eqid 2734 | 
. . 3
⊢
(comp‘𝐸) =
(comp‘𝐸) | 
| 4 |   | eqid 2734 | 
. . . . 5
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | 
| 5 |   | fuco22natlem2.b | 
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | 
| 6 | 4, 5 | natrcl2 48897 | 
. . . 4
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | 
| 7 | 6 | funcrcl3 48858 | 
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) | 
| 8 |   | eqid 2734 | 
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 9 | 8, 1, 6 | funcf1 17881 | 
. . . 4
⊢ (𝜑 → 𝐾:(Base‘𝐷)⟶(Base‘𝐸)) | 
| 10 |   | eqid 2734 | 
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 11 |   | eqid 2734 | 
. . . . . . 7
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | 
| 12 |   | fuco22natlem1.a | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | 
| 13 | 11, 12 | natrcl2 48897 | 
. . . . . 6
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | 
| 14 | 10, 8, 13 | funcf1 17881 | 
. . . . 5
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) | 
| 15 |   | fuco22natlem1.x | 
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | 
| 16 | 14, 15 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) | 
| 17 | 9, 16 | ffvelcdmd 7084 | 
. . 3
⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) ∈ (Base‘𝐸)) | 
| 18 |   | fuco22natlem1.y | 
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) | 
| 19 | 14, 18 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) | 
| 20 | 9, 19 | ffvelcdmd 7084 | 
. . 3
⊢ (𝜑 → (𝐾‘(𝐹‘𝑌)) ∈ (Base‘𝐸)) | 
| 21 | 11, 12 | natrcl3 48898 | 
. . . . . 6
⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) | 
| 22 | 10, 8, 21 | funcf1 17881 | 
. . . . 5
⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) | 
| 23 | 22, 18 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (𝑀‘𝑌) ∈ (Base‘𝐷)) | 
| 24 | 9, 23 | ffvelcdmd 7084 | 
. . 3
⊢ (𝜑 → (𝐾‘(𝑀‘𝑌)) ∈ (Base‘𝐸)) | 
| 25 |   | eqid 2734 | 
. . . . 5
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) | 
| 26 | 8, 25, 2, 6, 16, 19 | funcf2 17883 | 
. . . 4
⊢ (𝜑 → ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))⟶((𝐾‘(𝐹‘𝑋))(Hom ‘𝐸)(𝐾‘(𝐹‘𝑌)))) | 
| 27 |   | eqid 2734 | 
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 28 | 10, 27, 25, 13, 15, 18 | funcf2 17883 | 
. . . . 5
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) | 
| 29 |   | fuco22natlem1.h | 
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) | 
| 30 | 28, 29 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐻) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) | 
| 31 | 26, 30 | ffvelcdmd 7084 | 
. . 3
⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻)) ∈ ((𝐾‘(𝐹‘𝑋))(Hom ‘𝐸)(𝐾‘(𝐹‘𝑌)))) | 
| 32 | 8, 25, 2, 6, 19, 23 | funcf2 17883 | 
. . . 4
⊢ (𝜑 → ((𝐹‘𝑌)𝐿(𝑀‘𝑌)):((𝐹‘𝑌)(Hom ‘𝐷)(𝑀‘𝑌))⟶((𝐾‘(𝐹‘𝑌))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑌)))) | 
| 33 | 11, 12, 10, 25, 18 | natcl 17971 | 
. . . 4
⊢ (𝜑 → (𝐴‘𝑌) ∈ ((𝐹‘𝑌)(Hom ‘𝐷)(𝑀‘𝑌))) | 
| 34 | 32, 33 | ffvelcdmd 7084 | 
. . 3
⊢ (𝜑 → (((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)) ∈ ((𝐾‘(𝐹‘𝑌))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑌)))) | 
| 35 | 4, 5 | natrcl3 48898 | 
. . . . 5
⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) | 
| 36 | 8, 1, 35 | funcf1 17881 | 
. . . 4
⊢ (𝜑 → 𝑅:(Base‘𝐷)⟶(Base‘𝐸)) | 
| 37 | 36, 23 | ffvelcdmd 7084 | 
. . 3
⊢ (𝜑 → (𝑅‘(𝑀‘𝑌)) ∈ (Base‘𝐸)) | 
| 38 | 4, 5, 8, 2, 23 | natcl 17971 | 
. . 3
⊢ (𝜑 → (𝐵‘(𝑀‘𝑌)) ∈ ((𝐾‘(𝑀‘𝑌))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑌)))) | 
| 39 | 1, 2, 3, 7, 17, 20, 24, 31, 34, 37, 38 | catass 17699 | 
. 2
⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))))) | 
| 40 | 15, 18, 12, 29, 6 | fuco22natlem1 48989 | 
. . 3
⊢ (𝜑 → ((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | 
| 41 | 40 | oveq2d 7428 | 
. 2
⊢ (𝜑 → ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻)))) = ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | 
| 42 | 22, 15 | ffvelcdmd 7084 | 
. . . . 5
⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝐷)) | 
| 43 | 10, 27, 25, 21, 15, 18 | funcf2 17883 | 
. . . . . 6
⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))) | 
| 44 | 43, 29 | ffvelcdmd 7084 | 
. . . . 5
⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐻) ∈ ((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))) | 
| 45 | 4, 5, 8, 25, 3, 42, 23, 44 | nati 17973 | 
. . . 4
⊢ (𝜑 → ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝑀‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝑀‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(𝐵‘(𝑀‘𝑋)))) | 
| 46 | 45 | oveq1d 7427 | 
. . 3
⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝑀‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = (((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝑀‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(𝐵‘(𝑀‘𝑋)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | 
| 47 | 9, 42 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (𝐾‘(𝑀‘𝑋)) ∈ (Base‘𝐸)) | 
| 48 | 8, 25, 2, 6, 16, 42 | funcf2 17883 | 
. . . . 5
⊢ (𝜑 → ((𝐹‘𝑋)𝐿(𝑀‘𝑋)):((𝐹‘𝑋)(Hom ‘𝐷)(𝑀‘𝑋))⟶((𝐾‘(𝐹‘𝑋))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑋)))) | 
| 49 | 11, 12, 10, 25, 15 | natcl 17971 | 
. . . . 5
⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝑀‘𝑋))) | 
| 50 | 48, 49 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)) ∈ ((𝐾‘(𝐹‘𝑋))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑋)))) | 
| 51 | 8, 25, 2, 6, 42, 23 | funcf2 17883 | 
. . . . 5
⊢ (𝜑 → ((𝑀‘𝑋)𝐿(𝑀‘𝑌)):((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))⟶((𝐾‘(𝑀‘𝑋))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑌)))) | 
| 52 | 51, 44 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻)) ∈ ((𝐾‘(𝑀‘𝑋))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑌)))) | 
| 53 | 1, 2, 3, 7, 17, 47, 24, 50, 52, 37, 38 | catass 17699 | 
. . 3
⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝑀‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | 
| 54 | 36, 42 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (𝑅‘(𝑀‘𝑋)) ∈ (Base‘𝐸)) | 
| 55 | 4, 5, 8, 2, 42 | natcl 17971 | 
. . . 4
⊢ (𝜑 → (𝐵‘(𝑀‘𝑋)) ∈ ((𝐾‘(𝑀‘𝑋))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑋)))) | 
| 56 | 8, 25, 2, 35, 42, 23 | funcf2 17883 | 
. . . . 5
⊢ (𝜑 → ((𝑀‘𝑋)𝑆(𝑀‘𝑌)):((𝑀‘𝑋)(Hom ‘𝐷)(𝑀‘𝑌))⟶((𝑅‘(𝑀‘𝑋))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑌)))) | 
| 57 | 56, 44 | ffvelcdmd 7084 | 
. . . 4
⊢ (𝜑 → (((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻)) ∈ ((𝑅‘(𝑀‘𝑋))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑌)))) | 
| 58 | 1, 2, 3, 7, 17, 47, 54, 50, 55, 37, 57 | catass 17699 | 
. . 3
⊢ (𝜑 → (((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝑀‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(𝐵‘(𝑀‘𝑋)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | 
| 59 | 46, 53, 58 | 3eqtr3d 2777 | 
. 2
⊢ (𝜑 → ((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | 
| 60 | 39, 41, 59 | 3eqtrd 2773 | 
1
⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) |