Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem2 Structured version   Visualization version   GIF version

Theorem fuco22natlem2 49238
Description: Lemma for fuco22nat 49241. The commutative square of natural transformation 𝐵 in category 𝐸, combined with the commutative square of fuco22natlem1 49237. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco22natlem1.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco22natlem1.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem1.h (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
fuco22natlem2.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
Assertion
Ref Expression
fuco22natlem2 (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))

Proof of Theorem fuco22natlem2
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝐸) = (Base‘𝐸)
2 eqid 2730 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
3 eqid 2730 . . 3 (comp‘𝐸) = (comp‘𝐸)
4 eqid 2730 . . . . 5 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
5 fuco22natlem2.b . . . . 5 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
64, 5natrcl2 49128 . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
76funcrcl3 48997 . . 3 (𝜑𝐸 ∈ Cat)
8 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
98, 1, 6funcf1 17834 . . . 4 (𝜑𝐾:(Base‘𝐷)⟶(Base‘𝐸))
10 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
11 eqid 2730 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
12 fuco22natlem1.a . . . . . . 7 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
1311, 12natrcl2 49128 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
1410, 8, 13funcf1 17834 . . . . 5 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
15 fuco22natlem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
1614, 15ffvelcdmd 7064 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
179, 16ffvelcdmd 7064 . . 3 (𝜑 → (𝐾‘(𝐹𝑋)) ∈ (Base‘𝐸))
18 fuco22natlem1.y . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
1914, 18ffvelcdmd 7064 . . . 4 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
209, 19ffvelcdmd 7064 . . 3 (𝜑 → (𝐾‘(𝐹𝑌)) ∈ (Base‘𝐸))
2111, 12natrcl3 49129 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
2210, 8, 21funcf1 17834 . . . . 5 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
2322, 18ffvelcdmd 7064 . . . 4 (𝜑 → (𝑀𝑌) ∈ (Base‘𝐷))
249, 23ffvelcdmd 7064 . . 3 (𝜑 → (𝐾‘(𝑀𝑌)) ∈ (Base‘𝐸))
25 eqid 2730 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
268, 25, 2, 6, 16, 19funcf2 17836 . . . 4 (𝜑 → ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌))⟶((𝐾‘(𝐹𝑋))(Hom ‘𝐸)(𝐾‘(𝐹𝑌))))
27 eqid 2730 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
2810, 27, 25, 13, 15, 18funcf2 17836 . . . . 5 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
29 fuco22natlem1.h . . . . 5 (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
3028, 29ffvelcdmd 7064 . . . 4 (𝜑 → ((𝑋𝐺𝑌)‘𝐻) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
3126, 30ffvelcdmd 7064 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻)) ∈ ((𝐾‘(𝐹𝑋))(Hom ‘𝐸)(𝐾‘(𝐹𝑌))))
328, 25, 2, 6, 19, 23funcf2 17836 . . . 4 (𝜑 → ((𝐹𝑌)𝐿(𝑀𝑌)):((𝐹𝑌)(Hom ‘𝐷)(𝑀𝑌))⟶((𝐾‘(𝐹𝑌))(Hom ‘𝐸)(𝐾‘(𝑀𝑌))))
3311, 12, 10, 25, 18natcl 17924 . . . 4 (𝜑 → (𝐴𝑌) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝑀𝑌)))
3432, 33ffvelcdmd 7064 . . 3 (𝜑 → (((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)) ∈ ((𝐾‘(𝐹𝑌))(Hom ‘𝐸)(𝐾‘(𝑀𝑌))))
354, 5natrcl3 49129 . . . . 5 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
368, 1, 35funcf1 17834 . . . 4 (𝜑𝑅:(Base‘𝐷)⟶(Base‘𝐸))
3736, 23ffvelcdmd 7064 . . 3 (𝜑 → (𝑅‘(𝑀𝑌)) ∈ (Base‘𝐸))
384, 5, 8, 2, 23natcl 17924 . . 3 (𝜑 → (𝐵‘(𝑀𝑌)) ∈ ((𝐾‘(𝑀𝑌))(Hom ‘𝐸)(𝑅‘(𝑀𝑌))))
391, 2, 3, 7, 17, 20, 24, 31, 34, 37, 38catass 17653 . 2 (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻)))))
4015, 18, 12, 29, 6fuco22natlem1 49237 . . 3 (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
4140oveq2d 7410 . 2 (𝜑 → ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻)))) = ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
4222, 15ffvelcdmd 7064 . . . . 5 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
4310, 27, 25, 21, 15, 18funcf2 17836 . . . . . 6 (𝜑 → (𝑋𝑁𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
4443, 29ffvelcdmd 7064 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐻) ∈ ((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌)))
454, 5, 8, 25, 3, 42, 23, 44nati 17926 . . . 4 (𝜑 → ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝑀𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝑀𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(𝐵‘(𝑀𝑋))))
4645oveq1d 7409 . . 3 (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝑀𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = (((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝑀𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(𝐵‘(𝑀𝑋)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
479, 42ffvelcdmd 7064 . . . 4 (𝜑 → (𝐾‘(𝑀𝑋)) ∈ (Base‘𝐸))
488, 25, 2, 6, 16, 42funcf2 17836 . . . . 5 (𝜑 → ((𝐹𝑋)𝐿(𝑀𝑋)):((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋))⟶((𝐾‘(𝐹𝑋))(Hom ‘𝐸)(𝐾‘(𝑀𝑋))))
4911, 12, 10, 25, 15natcl 17924 . . . . 5 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
5048, 49ffvelcdmd 7064 . . . 4 (𝜑 → (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)) ∈ ((𝐾‘(𝐹𝑋))(Hom ‘𝐸)(𝐾‘(𝑀𝑋))))
518, 25, 2, 6, 42, 23funcf2 17836 . . . . 5 (𝜑 → ((𝑀𝑋)𝐿(𝑀𝑌)):((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌))⟶((𝐾‘(𝑀𝑋))(Hom ‘𝐸)(𝐾‘(𝑀𝑌))))
5251, 44ffvelcdmd 7064 . . . 4 (𝜑 → (((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻)) ∈ ((𝐾‘(𝑀𝑋))(Hom ‘𝐸)(𝐾‘(𝑀𝑌))))
531, 2, 3, 7, 17, 47, 24, 50, 52, 37, 38catass 17653 . . 3 (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝑀𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
5436, 42ffvelcdmd 7064 . . . 4 (𝜑 → (𝑅‘(𝑀𝑋)) ∈ (Base‘𝐸))
554, 5, 8, 2, 42natcl 17924 . . . 4 (𝜑 → (𝐵‘(𝑀𝑋)) ∈ ((𝐾‘(𝑀𝑋))(Hom ‘𝐸)(𝑅‘(𝑀𝑋))))
568, 25, 2, 35, 42, 23funcf2 17836 . . . . 5 (𝜑 → ((𝑀𝑋)𝑆(𝑀𝑌)):((𝑀𝑋)(Hom ‘𝐷)(𝑀𝑌))⟶((𝑅‘(𝑀𝑋))(Hom ‘𝐸)(𝑅‘(𝑀𝑌))))
5756, 44ffvelcdmd 7064 . . . 4 (𝜑 → (((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻)) ∈ ((𝑅‘(𝑀𝑋))(Hom ‘𝐸)(𝑅‘(𝑀𝑌))))
581, 2, 3, 7, 17, 47, 54, 50, 55, 37, 57catass 17653 . . 3 (𝜑 → (((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝑀𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(𝐵‘(𝑀𝑋)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
5946, 53, 583eqtr3d 2773 . 2 (𝜑 → ((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
6039, 41, 593eqtrd 2769 1 (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603  cfv 6519  (class class class)co 7394  Basecbs 17185  Hom chom 17237  compcco 17238   Nat cnat 17912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-func 17826  df-nat 17914
This theorem is referenced by:  fuco22natlem3  49239
  Copyright terms: Public domain W3C validator