Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fthcomf Structured version   Visualization version   GIF version

Theorem fthcomf 49150
Description: Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
fthcomf.1 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
fthcomf.2 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
fthcomf.3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
Assertion
Ref Expression
fthcomf (𝜑 → (compf𝐴) = (compf𝐵))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem fthcomf
StepHypRef Expression
1 fthcomf.3 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
2 eqid 2730 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2730 . . . . . . 7 (Hom ‘𝐴) = (Hom ‘𝐴)
4 eqid 2730 . . . . . . 7 (comp‘𝐴) = (comp‘𝐴)
5 eqid 2730 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
6 fthcomf.1 . . . . . . . . 9 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
76ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Faith 𝐶)𝐺)
8 fthfunc 17878 . . . . . . . . 9 (𝐴 Faith 𝐶) ⊆ (𝐴 Func 𝐶)
98ssbri 5155 . . . . . . . 8 (𝐹(𝐴 Faith 𝐶)𝐺𝐹(𝐴 Func 𝐶)𝐺)
107, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Func 𝐶)𝐺)
11 simplr1 1216 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐴))
12 simplr2 1217 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐴))
13 simplr3 1218 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐴))
14 simprl 770 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦))
15 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))
162, 3, 4, 5, 10, 11, 12, 13, 14, 15funcco 17840 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
17 eqid 2730 . . . . . . 7 (Base‘𝐵) = (Base‘𝐵)
18 eqid 2730 . . . . . . 7 (Hom ‘𝐵) = (Hom ‘𝐵)
19 eqid 2730 . . . . . . 7 (comp‘𝐵) = (comp‘𝐵)
20 eqid 2730 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
21 fthcomf.2 . . . . . . . 8 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
2221ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐵 Func 𝐷)𝐺)
236, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹(𝐴 Func 𝐶)𝐺)
2423, 21funchomf 49090 . . . . . . . . . 10 (𝜑 → (Homf𝐴) = (Homf𝐵))
2524homfeqbas 17664 . . . . . . . . 9 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2625ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Base‘𝐴) = (Base‘𝐵))
2711, 26eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐵))
2812, 26eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐵))
2913, 26eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐵))
3024ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Homf𝐴) = (Homf𝐵))
312, 3, 18, 30, 11, 12homfeqval 17665 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
3214, 31eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐵)𝑦))
332, 3, 18, 30, 12, 13homfeqval 17665 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑦(Hom ‘𝐴)𝑧) = (𝑦(Hom ‘𝐵)𝑧))
3415, 33eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐵)𝑧))
3517, 18, 19, 20, 22, 27, 28, 29, 32, 34funcco 17840 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
361, 16, 353eqtr4d 2775 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
37 eqid 2730 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3823funcrcl2 49072 . . . . . . . 8 (𝜑𝐴 ∈ Cat)
3938ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐴 ∈ Cat)
402, 3, 4, 39, 11, 12, 13, 14, 15catcocl 17653 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
4121funcrcl2 49072 . . . . . . . . 9 (𝜑𝐵 ∈ Cat)
4241ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐵 ∈ Cat)
4317, 18, 19, 42, 27, 28, 29, 32, 34catcocl 17653 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐵)𝑧))
442, 3, 18, 30, 11, 13homfeqval 17665 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑧) = (𝑥(Hom ‘𝐵)𝑧))
4543, 44eleqtrrd 2832 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
462, 3, 37, 7, 11, 13, 40, 45fthi 17889 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
4736, 46mpbid 232 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4847ralrimivva 3181 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4948ralrimivvva 3184 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
50 eqidd 2731 . . 3 (𝜑 → (Base‘𝐴) = (Base‘𝐴))
514, 19, 3, 50, 25, 24comfeq 17674 . 2 (𝜑 → ((compf𝐴) = (compf𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
5249, 51mpbird 257 1 (𝜑 → (compf𝐴) = (compf𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Homf chomf 17634  compfccomf 17635   Func cfunc 17823   Faith cfth 17874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-homf 17638  df-comf 17639  df-func 17827  df-fth 17876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator