Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fthcomf Structured version   Visualization version   GIF version

Theorem fthcomf 49045
Description: Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
fthcomf.1 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
fthcomf.2 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
fthcomf.3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
Assertion
Ref Expression
fthcomf (𝜑 → (compf𝐴) = (compf𝐵))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem fthcomf
StepHypRef Expression
1 fthcomf.3 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
2 eqid 2735 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2735 . . . . . . 7 (Hom ‘𝐴) = (Hom ‘𝐴)
4 eqid 2735 . . . . . . 7 (comp‘𝐴) = (comp‘𝐴)
5 eqid 2735 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
6 fthcomf.1 . . . . . . . . 9 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
76ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Faith 𝐶)𝐺)
8 fthfunc 17920 . . . . . . . . 9 (𝐴 Faith 𝐶) ⊆ (𝐴 Func 𝐶)
98ssbri 5164 . . . . . . . 8 (𝐹(𝐴 Faith 𝐶)𝐺𝐹(𝐴 Func 𝐶)𝐺)
107, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Func 𝐶)𝐺)
11 simplr1 1216 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐴))
12 simplr2 1217 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐴))
13 simplr3 1218 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐴))
14 simprl 770 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦))
15 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))
162, 3, 4, 5, 10, 11, 12, 13, 14, 15funcco 17882 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
17 eqid 2735 . . . . . . 7 (Base‘𝐵) = (Base‘𝐵)
18 eqid 2735 . . . . . . 7 (Hom ‘𝐵) = (Hom ‘𝐵)
19 eqid 2735 . . . . . . 7 (comp‘𝐵) = (comp‘𝐵)
20 eqid 2735 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
21 fthcomf.2 . . . . . . . 8 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
2221ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐵 Func 𝐷)𝐺)
236, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹(𝐴 Func 𝐶)𝐺)
2423, 21funchomf 49005 . . . . . . . . . 10 (𝜑 → (Homf𝐴) = (Homf𝐵))
2524homfeqbas 17706 . . . . . . . . 9 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2625ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Base‘𝐴) = (Base‘𝐵))
2711, 26eleqtrd 2836 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐵))
2812, 26eleqtrd 2836 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐵))
2913, 26eleqtrd 2836 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐵))
3024ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Homf𝐴) = (Homf𝐵))
312, 3, 18, 30, 11, 12homfeqval 17707 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
3214, 31eleqtrd 2836 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐵)𝑦))
332, 3, 18, 30, 12, 13homfeqval 17707 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑦(Hom ‘𝐴)𝑧) = (𝑦(Hom ‘𝐵)𝑧))
3415, 33eleqtrd 2836 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐵)𝑧))
3517, 18, 19, 20, 22, 27, 28, 29, 32, 34funcco 17882 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
361, 16, 353eqtr4d 2780 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
37 eqid 2735 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3823funcrcl2 48992 . . . . . . . 8 (𝜑𝐴 ∈ Cat)
3938ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐴 ∈ Cat)
402, 3, 4, 39, 11, 12, 13, 14, 15catcocl 17695 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
4121funcrcl2 48992 . . . . . . . . 9 (𝜑𝐵 ∈ Cat)
4241ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐵 ∈ Cat)
4317, 18, 19, 42, 27, 28, 29, 32, 34catcocl 17695 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐵)𝑧))
442, 3, 18, 30, 11, 13homfeqval 17707 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑧) = (𝑥(Hom ‘𝐵)𝑧))
4543, 44eleqtrrd 2837 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
462, 3, 37, 7, 11, 13, 40, 45fthi 17931 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
4736, 46mpbid 232 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4847ralrimivva 3187 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4948ralrimivvva 3190 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
50 eqidd 2736 . . 3 (𝜑 → (Base‘𝐴) = (Base‘𝐴))
514, 19, 3, 50, 25, 24comfeq 17716 . 2 (𝜑 → ((compf𝐴) = (compf𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
5249, 51mpbird 257 1 (𝜑 → (compf𝐴) = (compf𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cop 4607   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674  Homf chomf 17676  compfccomf 17677   Func cfunc 17865   Faith cfth 17916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-ixp 8910  df-cat 17678  df-homf 17680  df-comf 17681  df-func 17869  df-fth 17918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator