Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fthcomf Structured version   Visualization version   GIF version

Theorem fthcomf 49139
Description: Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
fthcomf.1 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
fthcomf.2 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
fthcomf.3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
Assertion
Ref Expression
fthcomf (𝜑 → (compf𝐴) = (compf𝐵))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem fthcomf
StepHypRef Expression
1 fthcomf.3 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
2 eqid 2729 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2729 . . . . . . 7 (Hom ‘𝐴) = (Hom ‘𝐴)
4 eqid 2729 . . . . . . 7 (comp‘𝐴) = (comp‘𝐴)
5 eqid 2729 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
6 fthcomf.1 . . . . . . . . 9 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
76ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Faith 𝐶)𝐺)
8 fthfunc 17851 . . . . . . . . 9 (𝐴 Faith 𝐶) ⊆ (𝐴 Func 𝐶)
98ssbri 5147 . . . . . . . 8 (𝐹(𝐴 Faith 𝐶)𝐺𝐹(𝐴 Func 𝐶)𝐺)
107, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Func 𝐶)𝐺)
11 simplr1 1216 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐴))
12 simplr2 1217 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐴))
13 simplr3 1218 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐴))
14 simprl 770 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦))
15 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))
162, 3, 4, 5, 10, 11, 12, 13, 14, 15funcco 17813 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
17 eqid 2729 . . . . . . 7 (Base‘𝐵) = (Base‘𝐵)
18 eqid 2729 . . . . . . 7 (Hom ‘𝐵) = (Hom ‘𝐵)
19 eqid 2729 . . . . . . 7 (comp‘𝐵) = (comp‘𝐵)
20 eqid 2729 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
21 fthcomf.2 . . . . . . . 8 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
2221ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐵 Func 𝐷)𝐺)
236, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹(𝐴 Func 𝐶)𝐺)
2423, 21funchomf 49079 . . . . . . . . . 10 (𝜑 → (Homf𝐴) = (Homf𝐵))
2524homfeqbas 17637 . . . . . . . . 9 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2625ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Base‘𝐴) = (Base‘𝐵))
2711, 26eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐵))
2812, 26eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐵))
2913, 26eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐵))
3024ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Homf𝐴) = (Homf𝐵))
312, 3, 18, 30, 11, 12homfeqval 17638 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
3214, 31eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐵)𝑦))
332, 3, 18, 30, 12, 13homfeqval 17638 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑦(Hom ‘𝐴)𝑧) = (𝑦(Hom ‘𝐵)𝑧))
3415, 33eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐵)𝑧))
3517, 18, 19, 20, 22, 27, 28, 29, 32, 34funcco 17813 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
361, 16, 353eqtr4d 2774 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
37 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3823funcrcl2 49061 . . . . . . . 8 (𝜑𝐴 ∈ Cat)
3938ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐴 ∈ Cat)
402, 3, 4, 39, 11, 12, 13, 14, 15catcocl 17626 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
4121funcrcl2 49061 . . . . . . . . 9 (𝜑𝐵 ∈ Cat)
4241ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐵 ∈ Cat)
4317, 18, 19, 42, 27, 28, 29, 32, 34catcocl 17626 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐵)𝑧))
442, 3, 18, 30, 11, 13homfeqval 17638 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑧) = (𝑥(Hom ‘𝐵)𝑧))
4543, 44eleqtrrd 2831 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
462, 3, 37, 7, 11, 13, 40, 45fthi 17862 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
4736, 46mpbid 232 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4847ralrimivva 3178 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4948ralrimivvva 3181 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
50 eqidd 2730 . . 3 (𝜑 → (Base‘𝐴) = (Base‘𝐴))
514, 19, 3, 50, 25, 24comfeq 17647 . 2 (𝜑 → ((compf𝐴) = (compf𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
5249, 51mpbird 257 1 (𝜑 → (compf𝐴) = (compf𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  Homf chomf 17607  compfccomf 17608   Func cfunc 17796   Faith cfth 17847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-homf 17611  df-comf 17612  df-func 17800  df-fth 17849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator