Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fthcomf Structured version   Visualization version   GIF version

Theorem fthcomf 49152
Description: Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
fthcomf.1 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
fthcomf.2 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
fthcomf.3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
Assertion
Ref Expression
fthcomf (𝜑 → (compf𝐴) = (compf𝐵))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem fthcomf
StepHypRef Expression
1 fthcomf.3 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
2 eqid 2729 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2729 . . . . . . 7 (Hom ‘𝐴) = (Hom ‘𝐴)
4 eqid 2729 . . . . . . 7 (comp‘𝐴) = (comp‘𝐴)
5 eqid 2729 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
6 fthcomf.1 . . . . . . . . 9 (𝜑𝐹(𝐴 Faith 𝐶)𝐺)
76ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Faith 𝐶)𝐺)
8 fthfunc 17816 . . . . . . . . 9 (𝐴 Faith 𝐶) ⊆ (𝐴 Func 𝐶)
98ssbri 5137 . . . . . . . 8 (𝐹(𝐴 Faith 𝐶)𝐺𝐹(𝐴 Func 𝐶)𝐺)
107, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Func 𝐶)𝐺)
11 simplr1 1216 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐴))
12 simplr2 1217 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐴))
13 simplr3 1218 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐴))
14 simprl 770 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦))
15 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))
162, 3, 4, 5, 10, 11, 12, 13, 14, 15funcco 17778 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐶)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
17 eqid 2729 . . . . . . 7 (Base‘𝐵) = (Base‘𝐵)
18 eqid 2729 . . . . . . 7 (Hom ‘𝐵) = (Hom ‘𝐵)
19 eqid 2729 . . . . . . 7 (comp‘𝐵) = (comp‘𝐵)
20 eqid 2729 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
21 fthcomf.2 . . . . . . . 8 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
2221ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐵 Func 𝐷)𝐺)
236, 9syl 17 . . . . . . . . . . 11 (𝜑𝐹(𝐴 Func 𝐶)𝐺)
2423, 21funchomf 49092 . . . . . . . . . 10 (𝜑 → (Homf𝐴) = (Homf𝐵))
2524homfeqbas 17602 . . . . . . . . 9 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2625ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Base‘𝐴) = (Base‘𝐵))
2711, 26eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐵))
2812, 26eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐵))
2913, 26eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐵))
3024ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Homf𝐴) = (Homf𝐵))
312, 3, 18, 30, 11, 12homfeqval 17603 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
3214, 31eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐵)𝑦))
332, 3, 18, 30, 12, 13homfeqval 17603 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑦(Hom ‘𝐴)𝑧) = (𝑦(Hom ‘𝐵)𝑧))
3415, 33eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐵)𝑧))
3517, 18, 19, 20, 22, 27, 28, 29, 32, 34funcco 17778 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
361, 16, 353eqtr4d 2774 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
37 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3823funcrcl2 49074 . . . . . . . 8 (𝜑𝐴 ∈ Cat)
3938ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐴 ∈ Cat)
402, 3, 4, 39, 11, 12, 13, 14, 15catcocl 17591 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
4121funcrcl2 49074 . . . . . . . . 9 (𝜑𝐵 ∈ Cat)
4241ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐵 ∈ Cat)
4317, 18, 19, 42, 27, 28, 29, 32, 34catcocl 17591 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐵)𝑧))
442, 3, 18, 30, 11, 13homfeqval 17603 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑧) = (𝑥(Hom ‘𝐵)𝑧))
4543, 44eleqtrrd 2831 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧))
462, 3, 37, 7, 11, 13, 40, 45fthi 17827 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
4736, 46mpbid 232 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4847ralrimivva 3172 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
4948ralrimivvva 3175 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓))
50 eqidd 2730 . . 3 (𝜑 → (Base‘𝐴) = (Base‘𝐴))
514, 19, 3, 50, 25, 24comfeq 17612 . 2 (𝜑 → ((compf𝐴) = (compf𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐴)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐵)𝑧)𝑓)))
5249, 51mpbird 257 1 (𝜑 → (compf𝐴) = (compf𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4583   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Homf chomf 17572  compfccomf 17573   Func cfunc 17761   Faith cfth 17812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-homf 17576  df-comf 17577  df-func 17765  df-fth 17814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator