Proof of Theorem fthcomf
| Step | Hyp | Ref
| Expression |
| 1 | | fthcomf.3 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐶)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓))) |
| 2 | | eqid 2735 |
. . . . . . 7
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 3 | | eqid 2735 |
. . . . . . 7
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
| 4 | | eqid 2735 |
. . . . . . 7
⊢
(comp‘𝐴) =
(comp‘𝐴) |
| 5 | | eqid 2735 |
. . . . . . 7
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 6 | | fthcomf.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹(𝐴 Faith 𝐶)𝐺) |
| 7 | 6 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Faith 𝐶)𝐺) |
| 8 | | fthfunc 17920 |
. . . . . . . . 9
⊢ (𝐴 Faith 𝐶) ⊆ (𝐴 Func 𝐶) |
| 9 | 8 | ssbri 5164 |
. . . . . . . 8
⊢ (𝐹(𝐴 Faith 𝐶)𝐺 → 𝐹(𝐴 Func 𝐶)𝐺) |
| 10 | 7, 9 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐴 Func 𝐶)𝐺) |
| 11 | | simplr1 1216 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐴)) |
| 12 | | simplr2 1217 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐴)) |
| 13 | | simplr3 1218 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐴)) |
| 14 | | simprl 770 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)) |
| 15 | | simprr 772 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)) |
| 16 | 2, 3, 4, 5, 10, 11, 12, 13, 14, 15 | funcco 17882 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐶)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓))) |
| 17 | | eqid 2735 |
. . . . . . 7
⊢
(Base‘𝐵) =
(Base‘𝐵) |
| 18 | | eqid 2735 |
. . . . . . 7
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
| 19 | | eqid 2735 |
. . . . . . 7
⊢
(comp‘𝐵) =
(comp‘𝐵) |
| 20 | | eqid 2735 |
. . . . . . 7
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 21 | | fthcomf.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) |
| 22 | 21 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐹(𝐵 Func 𝐷)𝐺) |
| 23 | 6, 9 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹(𝐴 Func 𝐶)𝐺) |
| 24 | 23, 21 | funchomf 49005 |
. . . . . . . . . 10
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 25 | 24 | homfeqbas 17706 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Base‘𝐴) = (Base‘𝐵)) |
| 27 | 11, 26 | eleqtrd 2836 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑥 ∈ (Base‘𝐵)) |
| 28 | 12, 26 | eleqtrd 2836 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑦 ∈ (Base‘𝐵)) |
| 29 | 13, 26 | eleqtrd 2836 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑧 ∈ (Base‘𝐵)) |
| 30 | 24 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 31 | 2, 3, 18, 30, 11, 12 | homfeqval 17707 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 32 | 14, 31 | eleqtrd 2836 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐵)𝑦)) |
| 33 | 2, 3, 18, 30, 12, 13 | homfeqval 17707 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑦(Hom ‘𝐴)𝑧) = (𝑦(Hom ‘𝐵)𝑧)) |
| 34 | 15, 33 | eleqtrd 2836 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐵)𝑧)) |
| 35 | 17, 18, 19, 20, 22, 27, 28, 29, 32, 34 | funcco 17882 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓))) |
| 36 | 1, 16, 35 | 3eqtr4d 2780 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → ((𝑥𝐺𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓))) |
| 37 | | eqid 2735 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 38 | 23 | funcrcl2 48992 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Cat) |
| 39 | 38 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐴 ∈ Cat) |
| 40 | 2, 3, 4, 39, 11, 12, 13, 14, 15 | catcocl 17695 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧)) |
| 41 | 21 | funcrcl2 48992 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ Cat) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → 𝐵 ∈ Cat) |
| 43 | 17, 18, 19, 42, 27, 28, 29, 32, 34 | catcocl 17695 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐵)𝑧)) |
| 44 | 2, 3, 18, 30, 11, 13 | homfeqval 17707 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑥(Hom ‘𝐴)𝑧) = (𝑥(Hom ‘𝐵)𝑧)) |
| 45 | 43, 44 | eleqtrrd 2837 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐴)𝑧)) |
| 46 | 2, 3, 37, 7, 11, 13, 40, 45 | fthi 17931 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑥𝐺𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓)) = ((𝑥𝐺𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓)) ↔ (𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓))) |
| 47 | 36, 46 | mpbid 232 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓)) |
| 48 | 47 | ralrimivva 3187 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓)) |
| 49 | 48 | ralrimivvva 3190 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓)) |
| 50 | | eqidd 2736 |
. . 3
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐴)) |
| 51 | 4, 19, 3, 50, 25, 24 | comfeq 17716 |
. 2
⊢ (𝜑 →
((compf‘𝐴) = (compf‘𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑓))) |
| 52 | 49, 51 | mpbird 257 |
1
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |