MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Structured version   Visualization version   GIF version

Theorem subgga 18906
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1 𝑋 = (Base‘𝐺)
subgga.2 + = (+g𝐺)
subgga.3 𝐻 = (𝐺s 𝑌)
subgga.4 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
Assertion
Ref Expression
subgga (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem subgga
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4 𝐻 = (𝐺s 𝑌)
21subggrp 18758 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
3 subgga.1 . . . 4 𝑋 = (Base‘𝐺)
43fvexi 6788 . . 3 𝑋 ∈ V
52, 4jctir 521 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐻 ∈ Grp ∧ 𝑋 ∈ V))
6 subgrcl 18760 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
76adantr 481 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝐺 ∈ Grp)
83subgss 18756 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
98sselda 3921 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑌) → 𝑥𝑋)
109adantrr 714 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑥𝑋)
11 simprr 770 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑦𝑋)
12 subgga.2 . . . . . . . 8 + = (+g𝐺)
133, 12grpcl 18585 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) ∈ 𝑋)
147, 10, 11, 13syl3anc 1370 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → (𝑥 + 𝑦) ∈ 𝑋)
1514ralrimivva 3123 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋)
16 subgga.4 . . . . . 6 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
1716fmpo 7908 . . . . 5 (∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋𝐹:(𝑌 × 𝑋)⟶𝑋)
1815, 17sylib 217 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:(𝑌 × 𝑋)⟶𝑋)
191subgbas 18759 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 = (Base‘𝐻))
2019xpeq1d 5618 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑌 × 𝑋) = ((Base‘𝐻) × 𝑋))
2120feq2d 6586 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:(𝑌 × 𝑋)⟶𝑋𝐹:((Base‘𝐻) × 𝑋)⟶𝑋))
2218, 21mpbid 231 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋)
23 eqid 2738 . . . . . . . 8 (0g𝐺) = (0g𝐺)
2423subg0cl 18763 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
25 oveq12 7284 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑢))
26 ovex 7308 . . . . . . . 8 ((0g𝐺) + 𝑢) ∈ V
2725, 16, 26ovmpoa 7428 . . . . . . 7 (((0g𝐺) ∈ 𝑌𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
2824, 27sylan 580 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
291, 23subg0 18761 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
3029oveq1d 7290 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
3130adantr 481 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
323, 12, 23grplid 18609 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
336, 32sylan 580 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
3428, 31, 333eqtr3d 2786 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐻)𝐹𝑢) = 𝑢)
356ad2antrr 723 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝐺 ∈ Grp)
368ad2antrr 723 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑌𝑋)
37 simprl 768 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑌)
3836, 37sseldd 3922 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑋)
39 simprr 770 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑌)
4036, 39sseldd 3922 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑋)
41 simplr 766 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑢𝑋)
423, 12grpass 18586 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑣𝑋𝑤𝑋𝑢𝑋)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
4335, 38, 40, 41, 42syl13anc 1371 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
443, 12grpcl 18585 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
4535, 40, 41, 44syl3anc 1370 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤 + 𝑢) ∈ 𝑋)
46 oveq12 7284 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝑤 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + (𝑤 + 𝑢)))
47 ovex 7308 . . . . . . . . . . 11 (𝑣 + (𝑤 + 𝑢)) ∈ V
4846, 16, 47ovmpoa 7428 . . . . . . . . . 10 ((𝑣𝑌 ∧ (𝑤 + 𝑢) ∈ 𝑋) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
4937, 45, 48syl2anc 584 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
5043, 49eqtr4d 2781 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣𝐹(𝑤 + 𝑢)))
5112subgcl 18765 . . . . . . . . . . 11 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑣𝑌𝑤𝑌) → (𝑣 + 𝑤) ∈ 𝑌)
52513expb 1119 . . . . . . . . . 10 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
5352adantlr 712 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
54 oveq12 7284 . . . . . . . . . 10 ((𝑥 = (𝑣 + 𝑤) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((𝑣 + 𝑤) + 𝑢))
55 ovex 7308 . . . . . . . . . 10 ((𝑣 + 𝑤) + 𝑢) ∈ V
5654, 16, 55ovmpoa 7428 . . . . . . . . 9 (((𝑣 + 𝑤) ∈ 𝑌𝑢𝑋) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
5753, 41, 56syl2anc 584 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
58 oveq12 7284 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → (𝑥 + 𝑦) = (𝑤 + 𝑢))
59 ovex 7308 . . . . . . . . . . 11 (𝑤 + 𝑢) ∈ V
6058, 16, 59ovmpoa 7428 . . . . . . . . . 10 ((𝑤𝑌𝑢𝑋) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6139, 41, 60syl2anc 584 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6261oveq2d 7291 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤𝐹𝑢)) = (𝑣𝐹(𝑤 + 𝑢)))
6350, 57, 623eqtr4d 2788 . . . . . . 7 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
6463ralrimivva 3123 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
651, 12ressplusg 17000 . . . . . . . . . . . 12 (𝑌 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
6665oveqd 7292 . . . . . . . . . . 11 (𝑌 ∈ (SubGrp‘𝐺) → (𝑣 + 𝑤) = (𝑣(+g𝐻)𝑤))
6766oveq1d 7290 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣(+g𝐻)𝑤)𝐹𝑢))
6867eqeq1d 2740 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
6919, 68raleqbidv 3336 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7019, 69raleqbidv 3336 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7170biimpa 477 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7264, 71syldan 591 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7334, 72jca 512 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7473ralrimiva 3103 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7522, 74jca 512 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))))
76 eqid 2738 . . 3 (Base‘𝐻) = (Base‘𝐻)
77 eqid 2738 . . 3 (+g𝐻) = (+g𝐻)
78 eqid 2738 . . 3 (0g𝐻) = (0g𝐻)
7976, 77, 78isga 18897 . 2 (𝐹 ∈ (𝐻 GrpAct 𝑋) ↔ ((𝐻 ∈ Grp ∧ 𝑋 ∈ V) ∧ (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))))
805, 75, 79sylanbrc 583 1 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  s cress 16941  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749   GrpAct cga 18895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-subg 18752  df-ga 18896
This theorem is referenced by:  gaid2  18909
  Copyright terms: Public domain W3C validator