MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Structured version   Visualization version   GIF version

Theorem subgga 19340
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1 𝑋 = (Base‘𝐺)
subgga.2 + = (+g𝐺)
subgga.3 𝐻 = (𝐺s 𝑌)
subgga.4 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
Assertion
Ref Expression
subgga (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem subgga
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4 𝐻 = (𝐺s 𝑌)
21subggrp 19169 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
3 subgga.1 . . . 4 𝑋 = (Base‘𝐺)
43fvexi 6934 . . 3 𝑋 ∈ V
52, 4jctir 520 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐻 ∈ Grp ∧ 𝑋 ∈ V))
6 subgrcl 19171 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
76adantr 480 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝐺 ∈ Grp)
83subgss 19167 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
98sselda 4008 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑌) → 𝑥𝑋)
109adantrr 716 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑥𝑋)
11 simprr 772 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑦𝑋)
12 subgga.2 . . . . . . . 8 + = (+g𝐺)
133, 12grpcl 18981 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) ∈ 𝑋)
147, 10, 11, 13syl3anc 1371 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → (𝑥 + 𝑦) ∈ 𝑋)
1514ralrimivva 3208 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋)
16 subgga.4 . . . . . 6 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
1716fmpo 8109 . . . . 5 (∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋𝐹:(𝑌 × 𝑋)⟶𝑋)
1815, 17sylib 218 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:(𝑌 × 𝑋)⟶𝑋)
191subgbas 19170 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 = (Base‘𝐻))
2019xpeq1d 5729 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑌 × 𝑋) = ((Base‘𝐻) × 𝑋))
2120feq2d 6733 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:(𝑌 × 𝑋)⟶𝑋𝐹:((Base‘𝐻) × 𝑋)⟶𝑋))
2218, 21mpbid 232 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋)
23 eqid 2740 . . . . . . . 8 (0g𝐺) = (0g𝐺)
2423subg0cl 19174 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
25 oveq12 7457 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑢))
26 ovex 7481 . . . . . . . 8 ((0g𝐺) + 𝑢) ∈ V
2725, 16, 26ovmpoa 7605 . . . . . . 7 (((0g𝐺) ∈ 𝑌𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
2824, 27sylan 579 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
291, 23subg0 19172 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
3029oveq1d 7463 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
3130adantr 480 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
323, 12, 23grplid 19007 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
336, 32sylan 579 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
3428, 31, 333eqtr3d 2788 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐻)𝐹𝑢) = 𝑢)
356ad2antrr 725 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝐺 ∈ Grp)
368ad2antrr 725 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑌𝑋)
37 simprl 770 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑌)
3836, 37sseldd 4009 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑋)
39 simprr 772 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑌)
4036, 39sseldd 4009 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑋)
41 simplr 768 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑢𝑋)
423, 12grpass 18982 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑣𝑋𝑤𝑋𝑢𝑋)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
4335, 38, 40, 41, 42syl13anc 1372 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
443, 12grpcl 18981 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
4535, 40, 41, 44syl3anc 1371 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤 + 𝑢) ∈ 𝑋)
46 oveq12 7457 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝑤 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + (𝑤 + 𝑢)))
47 ovex 7481 . . . . . . . . . . 11 (𝑣 + (𝑤 + 𝑢)) ∈ V
4846, 16, 47ovmpoa 7605 . . . . . . . . . 10 ((𝑣𝑌 ∧ (𝑤 + 𝑢) ∈ 𝑋) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
4937, 45, 48syl2anc 583 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
5043, 49eqtr4d 2783 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣𝐹(𝑤 + 𝑢)))
5112subgcl 19176 . . . . . . . . . . 11 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑣𝑌𝑤𝑌) → (𝑣 + 𝑤) ∈ 𝑌)
52513expb 1120 . . . . . . . . . 10 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
5352adantlr 714 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
54 oveq12 7457 . . . . . . . . . 10 ((𝑥 = (𝑣 + 𝑤) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((𝑣 + 𝑤) + 𝑢))
55 ovex 7481 . . . . . . . . . 10 ((𝑣 + 𝑤) + 𝑢) ∈ V
5654, 16, 55ovmpoa 7605 . . . . . . . . 9 (((𝑣 + 𝑤) ∈ 𝑌𝑢𝑋) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
5753, 41, 56syl2anc 583 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
58 oveq12 7457 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → (𝑥 + 𝑦) = (𝑤 + 𝑢))
59 ovex 7481 . . . . . . . . . . 11 (𝑤 + 𝑢) ∈ V
6058, 16, 59ovmpoa 7605 . . . . . . . . . 10 ((𝑤𝑌𝑢𝑋) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6139, 41, 60syl2anc 583 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6261oveq2d 7464 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤𝐹𝑢)) = (𝑣𝐹(𝑤 + 𝑢)))
6350, 57, 623eqtr4d 2790 . . . . . . 7 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
6463ralrimivva 3208 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
651, 12ressplusg 17349 . . . . . . . . . . . 12 (𝑌 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
6665oveqd 7465 . . . . . . . . . . 11 (𝑌 ∈ (SubGrp‘𝐺) → (𝑣 + 𝑤) = (𝑣(+g𝐻)𝑤))
6766oveq1d 7463 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣(+g𝐻)𝑤)𝐹𝑢))
6867eqeq1d 2742 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
6919, 68raleqbidv 3354 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7019, 69raleqbidv 3354 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7170biimpa 476 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7264, 71syldan 590 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7334, 72jca 511 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7473ralrimiva 3152 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7522, 74jca 511 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))))
76 eqid 2740 . . 3 (Base‘𝐻) = (Base‘𝐻)
77 eqid 2740 . . 3 (+g𝐻) = (+g𝐻)
78 eqid 2740 . . 3 (0g𝐻) = (0g𝐻)
7976, 77, 78isga 19331 . 2 (𝐹 ∈ (𝐻 GrpAct 𝑋) ↔ ((𝐻 ∈ Grp ∧ 𝑋 ∈ V) ∧ (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))))
805, 75, 79sylanbrc 582 1 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  SubGrpcsubg 19160   GrpAct cga 19329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-subg 19163  df-ga 19330
This theorem is referenced by:  gaid2  19343
  Copyright terms: Public domain W3C validator