| Step | Hyp | Ref
| Expression |
| 1 | | subgga.3 |
. . . 4
⊢ 𝐻 = (𝐺 ↾s 𝑌) |
| 2 | 1 | subggrp 19117 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 3 | | subgga.1 |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
| 4 | 3 | fvexi 6895 |
. . 3
⊢ 𝑋 ∈ V |
| 5 | 2, 4 | jctir 520 |
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐻 ∈ Grp ∧ 𝑋 ∈ V)) |
| 6 | | subgrcl 19119 |
. . . . . . . 8
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 8 | 3 | subgss 19115 |
. . . . . . . . 9
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
| 9 | 8 | sselda 3963 |
. . . . . . . 8
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 10 | 9 | adantrr 717 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 11 | | simprr 772 |
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 12 | | subgga.2 |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
| 13 | 3, 12 | grpcl 18929 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥 + 𝑦) ∈ 𝑋) |
| 14 | 7, 10, 11, 13 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋)) → (𝑥 + 𝑦) ∈ 𝑋) |
| 15 | 14 | ralrimivva 3188 |
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑋 (𝑥 + 𝑦) ∈ 𝑋) |
| 16 | | subgga.4 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) |
| 17 | 16 | fmpo 8072 |
. . . . 5
⊢
(∀𝑥 ∈
𝑌 ∀𝑦 ∈ 𝑋 (𝑥 + 𝑦) ∈ 𝑋 ↔ 𝐹:(𝑌 × 𝑋)⟶𝑋) |
| 18 | 15, 17 | sylib 218 |
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:(𝑌 × 𝑋)⟶𝑋) |
| 19 | 1 | subgbas 19118 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 = (Base‘𝐻)) |
| 20 | 19 | xpeq1d 5688 |
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑌 × 𝑋) = ((Base‘𝐻) × 𝑋)) |
| 21 | 20 | feq2d 6697 |
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:(𝑌 × 𝑋)⟶𝑋 ↔ 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋)) |
| 22 | 18, 21 | mpbid 232 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋) |
| 23 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 24 | 23 | subg0cl 19122 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑌) |
| 25 | | oveq12 7419 |
. . . . . . . 8
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((0g‘𝐺) + 𝑢)) |
| 26 | | ovex 7443 |
. . . . . . . 8
⊢
((0g‘𝐺) + 𝑢) ∈ V |
| 27 | 25, 16, 26 | ovmpoa 7567 |
. . . . . . 7
⊢
(((0g‘𝐺) ∈ 𝑌 ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺)𝐹𝑢) = ((0g‘𝐺) + 𝑢)) |
| 28 | 24, 27 | sylan 580 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺)𝐹𝑢) = ((0g‘𝐺) + 𝑢)) |
| 29 | 1, 23 | subg0 19120 |
. . . . . . . 8
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
| 30 | 29 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
((0g‘𝐺)𝐹𝑢) = ((0g‘𝐻)𝐹𝑢)) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺)𝐹𝑢) = ((0g‘𝐻)𝐹𝑢)) |
| 32 | 3, 12, 23 | grplid 18955 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 33 | 6, 32 | sylan 580 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 34 | 28, 31, 33 | 3eqtr3d 2779 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐻)𝐹𝑢) = 𝑢) |
| 35 | 6 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝐺 ∈ Grp) |
| 36 | 8 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝑌 ⊆ 𝑋) |
| 37 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝑣 ∈ 𝑌) |
| 38 | 36, 37 | sseldd 3964 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝑣 ∈ 𝑋) |
| 39 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝑤 ∈ 𝑌) |
| 40 | 36, 39 | sseldd 3964 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝑤 ∈ 𝑋) |
| 41 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → 𝑢 ∈ 𝑋) |
| 42 | 3, 12 | grpass 18930 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢))) |
| 43 | 35, 38, 40, 41, 42 | syl13anc 1374 |
. . . . . . . . 9
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢))) |
| 44 | 3, 12 | grpcl 18929 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝑤 + 𝑢) ∈ 𝑋) |
| 45 | 35, 40, 41, 44 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → (𝑤 + 𝑢) ∈ 𝑋) |
| 46 | | oveq12 7419 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = (𝑤 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + (𝑤 + 𝑢))) |
| 47 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (𝑣 + (𝑤 + 𝑢)) ∈ V |
| 48 | 46, 16, 47 | ovmpoa 7567 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑌 ∧ (𝑤 + 𝑢) ∈ 𝑋) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢))) |
| 49 | 37, 45, 48 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢))) |
| 50 | 43, 49 | eqtr4d 2774 |
. . . . . . . 8
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣𝐹(𝑤 + 𝑢))) |
| 51 | 12 | subgcl 19124 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌) → (𝑣 + 𝑤) ∈ 𝑌) |
| 52 | 51 | 3expb 1120 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → (𝑣 + 𝑤) ∈ 𝑌) |
| 53 | 52 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → (𝑣 + 𝑤) ∈ 𝑌) |
| 54 | | oveq12 7419 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑣 + 𝑤) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((𝑣 + 𝑤) + 𝑢)) |
| 55 | | ovex 7443 |
. . . . . . . . . 10
⊢ ((𝑣 + 𝑤) + 𝑢) ∈ V |
| 56 | 54, 16, 55 | ovmpoa 7567 |
. . . . . . . . 9
⊢ (((𝑣 + 𝑤) ∈ 𝑌 ∧ 𝑢 ∈ 𝑋) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢)) |
| 57 | 53, 41, 56 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢)) |
| 58 | | oveq12 7419 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = (𝑤 + 𝑢)) |
| 59 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (𝑤 + 𝑢) ∈ V |
| 60 | 58, 16, 59 | ovmpoa 7567 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝑌 ∧ 𝑢 ∈ 𝑋) → (𝑤𝐹𝑢) = (𝑤 + 𝑢)) |
| 61 | 39, 41, 60 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → (𝑤𝐹𝑢) = (𝑤 + 𝑢)) |
| 62 | 61 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → (𝑣𝐹(𝑤𝐹𝑢)) = (𝑣𝐹(𝑤 + 𝑢))) |
| 63 | 50, 57, 62 | 3eqtr4d 2781 |
. . . . . . 7
⊢ (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) ∧ (𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) |
| 64 | 63 | ralrimivva 3188 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → ∀𝑣 ∈ 𝑌 ∀𝑤 ∈ 𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) |
| 65 | 1, 12 | ressplusg 17310 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ (SubGrp‘𝐺) → + =
(+g‘𝐻)) |
| 66 | 65 | oveqd 7427 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑣 + 𝑤) = (𝑣(+g‘𝐻)𝑤)) |
| 67 | 66 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣(+g‘𝐻)𝑤)𝐹𝑢)) |
| 68 | 67 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))) |
| 69 | 19, 68 | raleqbidv 3329 |
. . . . . . . 8
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑤 ∈ 𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))) |
| 70 | 19, 69 | raleqbidv 3329 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑣 ∈ 𝑌 ∀𝑤 ∈ 𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))) |
| 71 | 70 | biimpa 476 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ ∀𝑣 ∈ 𝑌 ∀𝑤 ∈ 𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) |
| 72 | 64, 71 | syldan 591 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) |
| 73 | 34, 72 | jca 511 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢 ∈ 𝑋) → (((0g‘𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))) |
| 74 | 73 | ralrimiva 3133 |
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑢 ∈ 𝑋 (((0g‘𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))) |
| 75 | 22, 74 | jca 511 |
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢 ∈ 𝑋 (((0g‘𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))) |
| 76 | | eqid 2736 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 77 | | eqid 2736 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 78 | | eqid 2736 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 79 | 76, 77, 78 | isga 19279 |
. 2
⊢ (𝐹 ∈ (𝐻 GrpAct 𝑋) ↔ ((𝐻 ∈ Grp ∧ 𝑋 ∈ V) ∧ (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢 ∈ 𝑋 (((0g‘𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g‘𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))))) |
| 80 | 5, 75, 79 | sylanbrc 583 |
1
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋)) |