MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Structured version   Visualization version   GIF version

Theorem subgga 18360
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1 𝑋 = (Base‘𝐺)
subgga.2 + = (+g𝐺)
subgga.3 𝐻 = (𝐺s 𝑌)
subgga.4 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
Assertion
Ref Expression
subgga (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem subgga
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4 𝐻 = (𝐺s 𝑌)
21subggrp 18212 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
3 subgga.1 . . . 4 𝑋 = (Base‘𝐺)
43fvexi 6681 . . 3 𝑋 ∈ V
52, 4jctir 521 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐻 ∈ Grp ∧ 𝑋 ∈ V))
6 subgrcl 18214 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
76adantr 481 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝐺 ∈ Grp)
83subgss 18210 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
98sselda 3971 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑌) → 𝑥𝑋)
109adantrr 713 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑥𝑋)
11 simprr 769 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑦𝑋)
12 subgga.2 . . . . . . . 8 + = (+g𝐺)
133, 12grpcl 18041 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) ∈ 𝑋)
147, 10, 11, 13syl3anc 1365 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → (𝑥 + 𝑦) ∈ 𝑋)
1514ralrimivva 3196 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋)
16 subgga.4 . . . . . 6 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
1716fmpo 7757 . . . . 5 (∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋𝐹:(𝑌 × 𝑋)⟶𝑋)
1815, 17sylib 219 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:(𝑌 × 𝑋)⟶𝑋)
191subgbas 18213 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 = (Base‘𝐻))
2019xpeq1d 5583 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑌 × 𝑋) = ((Base‘𝐻) × 𝑋))
2120feq2d 6497 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:(𝑌 × 𝑋)⟶𝑋𝐹:((Base‘𝐻) × 𝑋)⟶𝑋))
2218, 21mpbid 233 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋)
23 eqid 2826 . . . . . . . 8 (0g𝐺) = (0g𝐺)
2423subg0cl 18217 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
25 oveq12 7157 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑢))
26 ovex 7181 . . . . . . . 8 ((0g𝐺) + 𝑢) ∈ V
2725, 16, 26ovmpoa 7295 . . . . . . 7 (((0g𝐺) ∈ 𝑌𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
2824, 27sylan 580 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
291, 23subg0 18215 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
3029oveq1d 7163 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
3130adantr 481 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
323, 12, 23grplid 18063 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
336, 32sylan 580 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
3428, 31, 333eqtr3d 2869 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐻)𝐹𝑢) = 𝑢)
356ad2antrr 722 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝐺 ∈ Grp)
368ad2antrr 722 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑌𝑋)
37 simprl 767 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑌)
3836, 37sseldd 3972 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑋)
39 simprr 769 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑌)
4036, 39sseldd 3972 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑋)
41 simplr 765 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑢𝑋)
423, 12grpass 18042 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑣𝑋𝑤𝑋𝑢𝑋)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
4335, 38, 40, 41, 42syl13anc 1366 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
443, 12grpcl 18041 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
4535, 40, 41, 44syl3anc 1365 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤 + 𝑢) ∈ 𝑋)
46 oveq12 7157 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝑤 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + (𝑤 + 𝑢)))
47 ovex 7181 . . . . . . . . . . 11 (𝑣 + (𝑤 + 𝑢)) ∈ V
4846, 16, 47ovmpoa 7295 . . . . . . . . . 10 ((𝑣𝑌 ∧ (𝑤 + 𝑢) ∈ 𝑋) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
4937, 45, 48syl2anc 584 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
5043, 49eqtr4d 2864 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣𝐹(𝑤 + 𝑢)))
5112subgcl 18219 . . . . . . . . . . 11 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑣𝑌𝑤𝑌) → (𝑣 + 𝑤) ∈ 𝑌)
52513expb 1114 . . . . . . . . . 10 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
5352adantlr 711 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
54 oveq12 7157 . . . . . . . . . 10 ((𝑥 = (𝑣 + 𝑤) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((𝑣 + 𝑤) + 𝑢))
55 ovex 7181 . . . . . . . . . 10 ((𝑣 + 𝑤) + 𝑢) ∈ V
5654, 16, 55ovmpoa 7295 . . . . . . . . 9 (((𝑣 + 𝑤) ∈ 𝑌𝑢𝑋) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
5753, 41, 56syl2anc 584 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
58 oveq12 7157 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → (𝑥 + 𝑦) = (𝑤 + 𝑢))
59 ovex 7181 . . . . . . . . . . 11 (𝑤 + 𝑢) ∈ V
6058, 16, 59ovmpoa 7295 . . . . . . . . . 10 ((𝑤𝑌𝑢𝑋) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6139, 41, 60syl2anc 584 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6261oveq2d 7164 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤𝐹𝑢)) = (𝑣𝐹(𝑤 + 𝑢)))
6350, 57, 623eqtr4d 2871 . . . . . . 7 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
6463ralrimivva 3196 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
651, 12ressplusg 16602 . . . . . . . . . . . 12 (𝑌 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
6665oveqd 7165 . . . . . . . . . . 11 (𝑌 ∈ (SubGrp‘𝐺) → (𝑣 + 𝑤) = (𝑣(+g𝐻)𝑤))
6766oveq1d 7163 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣(+g𝐻)𝑤)𝐹𝑢))
6867eqeq1d 2828 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
6919, 68raleqbidv 3407 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7019, 69raleqbidv 3407 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7170biimpa 477 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7264, 71syldan 591 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7334, 72jca 512 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7473ralrimiva 3187 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7522, 74jca 512 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))))
76 eqid 2826 . . 3 (Base‘𝐻) = (Base‘𝐻)
77 eqid 2826 . . 3 (+g𝐻) = (+g𝐻)
78 eqid 2826 . . 3 (0g𝐻) = (0g𝐻)
7976, 77, 78isga 18351 . 2 (𝐹 ∈ (𝐻 GrpAct 𝑋) ↔ ((𝐻 ∈ Grp ∧ 𝑋 ∈ V) ∧ (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))))
805, 75, 79sylanbrc 583 1 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143  Vcvv 3500  wss 3940   × cxp 5552  wf 6348  cfv 6352  (class class class)co 7148  cmpo 7150  Basecbs 16473  s cress 16474  +gcplusg 16555  0gc0g 16703  Grpcgrp 18033  SubGrpcsubg 18203   GrpAct cga 18349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-0g 16705  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-grp 18036  df-subg 18206  df-ga 18350
This theorem is referenced by:  gaid2  18363
  Copyright terms: Public domain W3C validator