MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpropd Structured version   Visualization version   GIF version

Theorem rhmpropd 20637
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a (𝜑𝐵 = (Base‘𝐽))
rhmpropd.b (𝜑𝐶 = (Base‘𝐾))
rhmpropd.c (𝜑𝐵 = (Base‘𝐿))
rhmpropd.d (𝜑𝐶 = (Base‘𝑀))
rhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
rhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
rhmpropd.g ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
rhmpropd.h ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
Assertion
Ref Expression
rhmpropd (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem rhmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 rhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 rhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4 rhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 20311 . . . . 5 (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring))
6 rhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
7 rhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
8 rhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 rhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
106, 7, 8, 9ringpropd 20311 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring))
115, 10anbi12d 631 . . . 4 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
121, 6, 2, 7, 3, 8ghmpropd 19296 . . . . . 6 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
1312eleq2d 2830 . . . . 5 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
14 eqid 2740 . . . . . . . . 9 (mulGrp‘𝐽) = (mulGrp‘𝐽)
15 eqid 2740 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
1614, 15mgpbas 20167 . . . . . . . 8 (Base‘𝐽) = (Base‘(mulGrp‘𝐽))
171, 16eqtrdi 2796 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐽)))
18 eqid 2740 . . . . . . . . 9 (mulGrp‘𝐾) = (mulGrp‘𝐾)
19 eqid 2740 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2018, 19mgpbas 20167 . . . . . . . 8 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
216, 20eqtrdi 2796 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝐾)))
22 eqid 2740 . . . . . . . . 9 (mulGrp‘𝐿) = (mulGrp‘𝐿)
23 eqid 2740 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2422, 23mgpbas 20167 . . . . . . . 8 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
252, 24eqtrdi 2796 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
26 eqid 2740 . . . . . . . . 9 (mulGrp‘𝑀) = (mulGrp‘𝑀)
27 eqid 2740 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
2826, 27mgpbas 20167 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
297, 28eqtrdi 2796 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝑀)))
30 eqid 2740 . . . . . . . . . 10 (.r𝐽) = (.r𝐽)
3114, 30mgpplusg 20165 . . . . . . . . 9 (.r𝐽) = (+g‘(mulGrp‘𝐽))
3231oveqi 7461 . . . . . . . 8 (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦)
33 eqid 2740 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
3422, 33mgpplusg 20165 . . . . . . . . 9 (.r𝐿) = (+g‘(mulGrp‘𝐿))
3534oveqi 7461 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
364, 32, 353eqtr3g 2803 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
37 eqid 2740 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
3818, 37mgpplusg 20165 . . . . . . . . 9 (.r𝐾) = (+g‘(mulGrp‘𝐾))
3938oveqi 7461 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
40 eqid 2740 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
4126, 40mgpplusg 20165 . . . . . . . . 9 (.r𝑀) = (+g‘(mulGrp‘𝑀))
4241oveqi 7461 . . . . . . . 8 (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)
439, 39, 423eqtr3g 2803 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
4417, 21, 25, 29, 36, 43mhmpropd 18827 . . . . . 6 (𝜑 → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))
4544eleq2d 2830 . . . . 5 (𝜑 → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))
4613, 45anbi12d 631 . . . 4 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
4711, 46anbi12d 631 . . 3 (𝜑 → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))))
4814, 18isrhm 20504 . . 3 (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))))
4922, 26isrhm 20504 . . 3 (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
5047, 48, 493bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
5150eqrdv 2738 1 (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   MndHom cmhm 18816   GrpHom cghm 19252  mulGrpcmgp 20161  Ringcrg 20260   RingHom crh 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-rhm 20498
This theorem is referenced by:  zrhpropd  21548  evls1rhm  22347  evl1rhm  22357  rhmply1  22411  zndvdchrrhm  41927  rhmpsr1  42508
  Copyright terms: Public domain W3C validator