MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpropd Structured version   Visualization version   GIF version

Theorem rhmpropd 20529
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a (𝜑𝐵 = (Base‘𝐽))
rhmpropd.b (𝜑𝐶 = (Base‘𝐾))
rhmpropd.c (𝜑𝐵 = (Base‘𝐿))
rhmpropd.d (𝜑𝐶 = (Base‘𝑀))
rhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
rhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
rhmpropd.g ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
rhmpropd.h ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
Assertion
Ref Expression
rhmpropd (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem rhmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 rhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 rhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4 rhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 20208 . . . . 5 (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring))
6 rhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
7 rhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
8 rhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 rhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
106, 7, 8, 9ringpropd 20208 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring))
115, 10anbi12d 632 . . . 4 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
121, 6, 2, 7, 3, 8ghmpropd 19170 . . . . . 6 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
1312eleq2d 2814 . . . . 5 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
14 eqid 2729 . . . . . . . . 9 (mulGrp‘𝐽) = (mulGrp‘𝐽)
15 eqid 2729 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
1614, 15mgpbas 20065 . . . . . . . 8 (Base‘𝐽) = (Base‘(mulGrp‘𝐽))
171, 16eqtrdi 2780 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐽)))
18 eqid 2729 . . . . . . . . 9 (mulGrp‘𝐾) = (mulGrp‘𝐾)
19 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2018, 19mgpbas 20065 . . . . . . . 8 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
216, 20eqtrdi 2780 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝐾)))
22 eqid 2729 . . . . . . . . 9 (mulGrp‘𝐿) = (mulGrp‘𝐿)
23 eqid 2729 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2422, 23mgpbas 20065 . . . . . . . 8 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
252, 24eqtrdi 2780 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
26 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑀) = (mulGrp‘𝑀)
27 eqid 2729 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
2826, 27mgpbas 20065 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
297, 28eqtrdi 2780 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝑀)))
30 eqid 2729 . . . . . . . . . 10 (.r𝐽) = (.r𝐽)
3114, 30mgpplusg 20064 . . . . . . . . 9 (.r𝐽) = (+g‘(mulGrp‘𝐽))
3231oveqi 7382 . . . . . . . 8 (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦)
33 eqid 2729 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
3422, 33mgpplusg 20064 . . . . . . . . 9 (.r𝐿) = (+g‘(mulGrp‘𝐿))
3534oveqi 7382 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
364, 32, 353eqtr3g 2787 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
37 eqid 2729 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
3818, 37mgpplusg 20064 . . . . . . . . 9 (.r𝐾) = (+g‘(mulGrp‘𝐾))
3938oveqi 7382 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
40 eqid 2729 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
4126, 40mgpplusg 20064 . . . . . . . . 9 (.r𝑀) = (+g‘(mulGrp‘𝑀))
4241oveqi 7382 . . . . . . . 8 (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)
439, 39, 423eqtr3g 2787 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
4417, 21, 25, 29, 36, 43mhmpropd 18701 . . . . . 6 (𝜑 → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))
4544eleq2d 2814 . . . . 5 (𝜑 → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))
4613, 45anbi12d 632 . . . 4 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
4711, 46anbi12d 632 . . 3 (𝜑 → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))))
4814, 18isrhm 20398 . . 3 (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))))
4922, 26isrhm 20398 . . 3 (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
5047, 48, 493bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
5150eqrdv 2727 1 (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197   MndHom cmhm 18690   GrpHom cghm 19126  mulGrpcmgp 20060  Ringcrg 20153   RingHom crh 20389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-ghm 19127  df-mgp 20061  df-ur 20102  df-ring 20155  df-rhm 20392
This theorem is referenced by:  zrhpropd  21456  evls1rhm  22242  evl1rhm  22252  rhmply1  22306  zndvdchrrhm  41953  rhmpsr1  42534
  Copyright terms: Public domain W3C validator