MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpropd Structured version   Visualization version   GIF version

Theorem rhmpropd 20060
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a (𝜑𝐵 = (Base‘𝐽))
rhmpropd.b (𝜑𝐶 = (Base‘𝐾))
rhmpropd.c (𝜑𝐵 = (Base‘𝐿))
rhmpropd.d (𝜑𝐶 = (Base‘𝑀))
rhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
rhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
rhmpropd.g ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
rhmpropd.h ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
Assertion
Ref Expression
rhmpropd (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem rhmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 rhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 rhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4 rhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19821 . . . . 5 (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring))
6 rhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
7 rhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
8 rhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 rhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
106, 7, 8, 9ringpropd 19821 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring))
115, 10anbi12d 631 . . . 4 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
121, 6, 2, 7, 3, 8ghmpropd 18872 . . . . . 6 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
1312eleq2d 2824 . . . . 5 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
14 eqid 2738 . . . . . . . . 9 (mulGrp‘𝐽) = (mulGrp‘𝐽)
15 eqid 2738 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
1614, 15mgpbas 19726 . . . . . . . 8 (Base‘𝐽) = (Base‘(mulGrp‘𝐽))
171, 16eqtrdi 2794 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐽)))
18 eqid 2738 . . . . . . . . 9 (mulGrp‘𝐾) = (mulGrp‘𝐾)
19 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2018, 19mgpbas 19726 . . . . . . . 8 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
216, 20eqtrdi 2794 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝐾)))
22 eqid 2738 . . . . . . . . 9 (mulGrp‘𝐿) = (mulGrp‘𝐿)
23 eqid 2738 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2422, 23mgpbas 19726 . . . . . . . 8 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
252, 24eqtrdi 2794 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
26 eqid 2738 . . . . . . . . 9 (mulGrp‘𝑀) = (mulGrp‘𝑀)
27 eqid 2738 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
2826, 27mgpbas 19726 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
297, 28eqtrdi 2794 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝑀)))
30 eqid 2738 . . . . . . . . . 10 (.r𝐽) = (.r𝐽)
3114, 30mgpplusg 19724 . . . . . . . . 9 (.r𝐽) = (+g‘(mulGrp‘𝐽))
3231oveqi 7288 . . . . . . . 8 (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦)
33 eqid 2738 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
3422, 33mgpplusg 19724 . . . . . . . . 9 (.r𝐿) = (+g‘(mulGrp‘𝐿))
3534oveqi 7288 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
364, 32, 353eqtr3g 2801 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
37 eqid 2738 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
3818, 37mgpplusg 19724 . . . . . . . . 9 (.r𝐾) = (+g‘(mulGrp‘𝐾))
3938oveqi 7288 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
40 eqid 2738 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
4126, 40mgpplusg 19724 . . . . . . . . 9 (.r𝑀) = (+g‘(mulGrp‘𝑀))
4241oveqi 7288 . . . . . . . 8 (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)
439, 39, 423eqtr3g 2801 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
4417, 21, 25, 29, 36, 43mhmpropd 18436 . . . . . 6 (𝜑 → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))
4544eleq2d 2824 . . . . 5 (𝜑 → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))
4613, 45anbi12d 631 . . . 4 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
4711, 46anbi12d 631 . . 3 (𝜑 → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))))
4814, 18isrhm 19965 . . 3 (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))))
4922, 26isrhm 19965 . . 3 (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
5047, 48, 493bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
5150eqrdv 2736 1 (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963   MndHom cmhm 18428   GrpHom cghm 18831  mulGrpcmgp 19720  Ringcrg 19783   RingHom crh 19956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-rnghom 19959
This theorem is referenced by:  zrhpropd  20716  evls1rhm  21488  evl1rhm  21498
  Copyright terms: Public domain W3C validator