Step | Hyp | Ref
| Expression |
1 | | rhmpropd.a |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
2 | | rhmpropd.c |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | rhmpropd.e |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
4 | | rhmpropd.g |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
5 | 1, 2, 3, 4 | ringpropd 19821 |
. . . . 5
⊢ (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | | rhmpropd.b |
. . . . . 6
⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
7 | | rhmpropd.d |
. . . . . 6
⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
8 | | rhmpropd.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
9 | | rhmpropd.h |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
10 | 6, 7, 8, 9 | ringpropd 19821 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring)) |
11 | 5, 10 | anbi12d 631 |
. . . 4
⊢ (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring))) |
12 | 1, 6, 2, 7, 3, 8 | ghmpropd 18872 |
. . . . . 6
⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
13 | 12 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝐽) =
(mulGrp‘𝐽) |
15 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐽) =
(Base‘𝐽) |
16 | 14, 15 | mgpbas 19726 |
. . . . . . . 8
⊢
(Base‘𝐽) =
(Base‘(mulGrp‘𝐽)) |
17 | 1, 16 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐽))) |
18 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | 18, 19 | mgpbas 19726 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
21 | 6, 20 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → 𝐶 = (Base‘(mulGrp‘𝐾))) |
22 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
23 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐿) =
(Base‘𝐿) |
24 | 22, 23 | mgpbas 19726 |
. . . . . . . 8
⊢
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿)) |
25 | 2, 24 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
26 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝑀) =
(mulGrp‘𝑀) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) |
28 | 26, 27 | mgpbas 19726 |
. . . . . . . 8
⊢
(Base‘𝑀) =
(Base‘(mulGrp‘𝑀)) |
29 | 7, 28 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → 𝐶 = (Base‘(mulGrp‘𝑀))) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝐽) = (.r‘𝐽) |
31 | 14, 30 | mgpplusg 19724 |
. . . . . . . . 9
⊢
(.r‘𝐽) = (+g‘(mulGrp‘𝐽)) |
32 | 31 | oveqi 7288 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦) |
33 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝐿) = (.r‘𝐿) |
34 | 22, 33 | mgpplusg 19724 |
. . . . . . . . 9
⊢
(.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
35 | 34 | oveqi 7288 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
36 | 4, 32, 35 | 3eqtr3g 2801 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
37 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝐾) = (.r‘𝐾) |
38 | 18, 37 | mgpplusg 19724 |
. . . . . . . . 9
⊢
(.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
39 | 38 | oveqi 7288 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
40 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑀) = (.r‘𝑀) |
41 | 26, 40 | mgpplusg 19724 |
. . . . . . . . 9
⊢
(.r‘𝑀) = (+g‘(mulGrp‘𝑀)) |
42 | 41 | oveqi 7288 |
. . . . . . . 8
⊢ (𝑥(.r‘𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦) |
43 | 9, 39, 42 | 3eqtr3g 2801 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)) |
44 | 17, 21, 25, 29, 36, 43 | mhmpropd 18436 |
. . . . . 6
⊢ (𝜑 → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))) |
45 | 44 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))) |
46 | 13, 45 | anbi12d 631 |
. . . 4
⊢ (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))) |
47 | 11, 46 | anbi12d 631 |
. . 3
⊢ (𝜑 → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))) |
48 | 14, 18 | isrhm 19965 |
. . 3
⊢ (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))))) |
49 | 22, 26 | isrhm 19965 |
. . 3
⊢ (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))) |
50 | 47, 48, 49 | 3bitr4g 314 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀))) |
51 | 50 | eqrdv 2736 |
1
⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) |