MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmpropd Structured version   Visualization version   GIF version

Theorem rhmpropd 19564
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a (𝜑𝐵 = (Base‘𝐽))
rhmpropd.b (𝜑𝐶 = (Base‘𝐾))
rhmpropd.c (𝜑𝐵 = (Base‘𝐿))
rhmpropd.d (𝜑𝐶 = (Base‘𝑀))
rhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
rhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
rhmpropd.g ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
rhmpropd.h ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
Assertion
Ref Expression
rhmpropd (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem rhmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 rhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 rhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4 rhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19328 . . . . 5 (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring))
6 rhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
7 rhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
8 rhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 rhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
106, 7, 8, 9ringpropd 19328 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring))
115, 10anbi12d 633 . . . 4 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
121, 6, 2, 7, 3, 8ghmpropd 18388 . . . . . 6 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
1312eleq2d 2875 . . . . 5 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
14 eqid 2798 . . . . . . . . 9 (mulGrp‘𝐽) = (mulGrp‘𝐽)
15 eqid 2798 . . . . . . . . 9 (Base‘𝐽) = (Base‘𝐽)
1614, 15mgpbas 19238 . . . . . . . 8 (Base‘𝐽) = (Base‘(mulGrp‘𝐽))
171, 16eqtrdi 2849 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐽)))
18 eqid 2798 . . . . . . . . 9 (mulGrp‘𝐾) = (mulGrp‘𝐾)
19 eqid 2798 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2018, 19mgpbas 19238 . . . . . . . 8 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
216, 20eqtrdi 2849 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝐾)))
22 eqid 2798 . . . . . . . . 9 (mulGrp‘𝐿) = (mulGrp‘𝐿)
23 eqid 2798 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
2422, 23mgpbas 19238 . . . . . . . 8 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
252, 24eqtrdi 2849 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
26 eqid 2798 . . . . . . . . 9 (mulGrp‘𝑀) = (mulGrp‘𝑀)
27 eqid 2798 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
2826, 27mgpbas 19238 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
297, 28eqtrdi 2849 . . . . . . 7 (𝜑𝐶 = (Base‘(mulGrp‘𝑀)))
30 eqid 2798 . . . . . . . . . 10 (.r𝐽) = (.r𝐽)
3114, 30mgpplusg 19236 . . . . . . . . 9 (.r𝐽) = (+g‘(mulGrp‘𝐽))
3231oveqi 7148 . . . . . . . 8 (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦)
33 eqid 2798 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
3422, 33mgpplusg 19236 . . . . . . . . 9 (.r𝐿) = (+g‘(mulGrp‘𝐿))
3534oveqi 7148 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
364, 32, 353eqtr3g 2856 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
37 eqid 2798 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
3818, 37mgpplusg 19236 . . . . . . . . 9 (.r𝐾) = (+g‘(mulGrp‘𝐾))
3938oveqi 7148 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
40 eqid 2798 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
4126, 40mgpplusg 19236 . . . . . . . . 9 (.r𝑀) = (+g‘(mulGrp‘𝑀))
4241oveqi 7148 . . . . . . . 8 (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)
439, 39, 423eqtr3g 2856 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
4417, 21, 25, 29, 36, 43mhmpropd 17954 . . . . . 6 (𝜑 → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))
4544eleq2d 2875 . . . . 5 (𝜑 → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))
4613, 45anbi12d 633 . . . 4 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
4711, 46anbi12d 633 . . 3 (𝜑 → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))))
4814, 18isrhm 19469 . . 3 (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))))
4922, 26isrhm 19469 . . 3 (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
5047, 48, 493bitr4g 317 . 2 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
5150eqrdv 2796 1 (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558   MndHom cmhm 17946   GrpHom cghm 18347  mulGrpcmgp 19232  Ringcrg 19290   RingHom crh 19460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-rnghom 19463
This theorem is referenced by:  zrhpropd  20208  evls1rhm  20946  evl1rhm  20956
  Copyright terms: Public domain W3C validator