| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rhmpropd.a | . . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) | 
| 2 |  | rhmpropd.c | . . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 3 |  | rhmpropd.e | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 4 |  | rhmpropd.g | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 5 | 1, 2, 3, 4 | ringpropd 20286 | . . . . 5
⊢ (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring)) | 
| 6 |  | rhmpropd.b | . . . . . 6
⊢ (𝜑 → 𝐶 = (Base‘𝐾)) | 
| 7 |  | rhmpropd.d | . . . . . 6
⊢ (𝜑 → 𝐶 = (Base‘𝑀)) | 
| 8 |  | rhmpropd.f | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | 
| 9 |  | rhmpropd.h | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) | 
| 10 | 6, 7, 8, 9 | ringpropd 20286 | . . . . 5
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring)) | 
| 11 | 5, 10 | anbi12d 632 | . . . 4
⊢ (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring))) | 
| 12 | 1, 6, 2, 7, 3, 8 | ghmpropd 19275 | . . . . . 6
⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) | 
| 13 | 12 | eleq2d 2826 | . . . . 5
⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) | 
| 14 |  | eqid 2736 | . . . . . . . . 9
⊢
(mulGrp‘𝐽) =
(mulGrp‘𝐽) | 
| 15 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝐽) =
(Base‘𝐽) | 
| 16 | 14, 15 | mgpbas 20143 | . . . . . . . 8
⊢
(Base‘𝐽) =
(Base‘(mulGrp‘𝐽)) | 
| 17 | 1, 16 | eqtrdi 2792 | . . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐽))) | 
| 18 |  | eqid 2736 | . . . . . . . . 9
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) | 
| 19 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 20 | 18, 19 | mgpbas 20143 | . . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) | 
| 21 | 6, 20 | eqtrdi 2792 | . . . . . . 7
⊢ (𝜑 → 𝐶 = (Base‘(mulGrp‘𝐾))) | 
| 22 |  | eqid 2736 | . . . . . . . . 9
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) | 
| 23 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 24 | 22, 23 | mgpbas 20143 | . . . . . . . 8
⊢
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿)) | 
| 25 | 2, 24 | eqtrdi 2792 | . . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) | 
| 26 |  | eqid 2736 | . . . . . . . . 9
⊢
(mulGrp‘𝑀) =
(mulGrp‘𝑀) | 
| 27 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 28 | 26, 27 | mgpbas 20143 | . . . . . . . 8
⊢
(Base‘𝑀) =
(Base‘(mulGrp‘𝑀)) | 
| 29 | 7, 28 | eqtrdi 2792 | . . . . . . 7
⊢ (𝜑 → 𝐶 = (Base‘(mulGrp‘𝑀))) | 
| 30 |  | eqid 2736 | . . . . . . . . . 10
⊢
(.r‘𝐽) = (.r‘𝐽) | 
| 31 | 14, 30 | mgpplusg 20142 | . . . . . . . . 9
⊢
(.r‘𝐽) = (+g‘(mulGrp‘𝐽)) | 
| 32 | 31 | oveqi 7445 | . . . . . . . 8
⊢ (𝑥(.r‘𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦) | 
| 33 |  | eqid 2736 | . . . . . . . . . 10
⊢
(.r‘𝐿) = (.r‘𝐿) | 
| 34 | 22, 33 | mgpplusg 20142 | . . . . . . . . 9
⊢
(.r‘𝐿) = (+g‘(mulGrp‘𝐿)) | 
| 35 | 34 | oveqi 7445 | . . . . . . . 8
⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) | 
| 36 | 4, 32, 35 | 3eqtr3g 2799 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) | 
| 37 |  | eqid 2736 | . . . . . . . . . 10
⊢
(.r‘𝐾) = (.r‘𝐾) | 
| 38 | 18, 37 | mgpplusg 20142 | . . . . . . . . 9
⊢
(.r‘𝐾) = (+g‘(mulGrp‘𝐾)) | 
| 39 | 38 | oveqi 7445 | . . . . . . . 8
⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) | 
| 40 |  | eqid 2736 | . . . . . . . . . 10
⊢
(.r‘𝑀) = (.r‘𝑀) | 
| 41 | 26, 40 | mgpplusg 20142 | . . . . . . . . 9
⊢
(.r‘𝑀) = (+g‘(mulGrp‘𝑀)) | 
| 42 | 41 | oveqi 7445 | . . . . . . . 8
⊢ (𝑥(.r‘𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦) | 
| 43 | 9, 39, 42 | 3eqtr3g 2799 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)) | 
| 44 | 17, 21, 25, 29, 36, 43 | mhmpropd 18806 | . . . . . 6
⊢ (𝜑 → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))) | 
| 45 | 44 | eleq2d 2826 | . . . . 5
⊢ (𝜑 → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))) | 
| 46 | 13, 45 | anbi12d 632 | . . . 4
⊢ (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))) | 
| 47 | 11, 46 | anbi12d 632 | . . 3
⊢ (𝜑 → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))) | 
| 48 | 14, 18 | isrhm 20479 | . . 3
⊢ (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))))) | 
| 49 | 22, 26 | isrhm 20479 | . . 3
⊢ (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))) | 
| 50 | 47, 48, 49 | 3bitr4g 314 | . 2
⊢ (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀))) | 
| 51 | 50 | eqrdv 2734 | 1
⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) |