MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggic Structured version   Visualization version   GIF version

Theorem cyggic 21509
Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.b 𝐵 = (Base‘𝐺)
cygctb.c 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
cyggic ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺𝑔 𝐻𝐵𝐶))

Proof of Theorem cyggic
StepHypRef Expression
1 cygctb.b . . 3 𝐵 = (Base‘𝐺)
2 cygctb.c . . 3 𝐶 = (Base‘𝐻)
31, 2gicen 19190 . 2 (𝐺𝑔 𝐻𝐵𝐶)
4 eqid 2731 . . . . . 6 if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
5 eqid 2731 . . . . . 6 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))
61, 4, 5cygzn 21507 . . . . 5 (𝐺 ∈ CycGrp → 𝐺𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
76ad2antrr 726 . . . 4 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → 𝐺𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
8 enfi 9096 . . . . . . . 8 (𝐵𝐶 → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin))
98adantl 481 . . . . . . 7 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin))
10 hasheni 14255 . . . . . . . 8 (𝐵𝐶 → (♯‘𝐵) = (♯‘𝐶))
1110adantl 481 . . . . . . 7 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (♯‘𝐵) = (♯‘𝐶))
129, 11ifbieq1d 4497 . . . . . 6 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0))
1312fveq2d 6826 . . . . 5 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)))
14 eqid 2731 . . . . . . . 8 if(𝐶 ∈ Fin, (♯‘𝐶), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)
15 eqid 2731 . . . . . . . 8 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))
162, 14, 15cygzn 21507 . . . . . . 7 (𝐻 ∈ CycGrp → 𝐻𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)))
1716ad2antlr 727 . . . . . 6 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → 𝐻𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)))
18 gicsym 19187 . . . . . 6 (𝐻𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻)
1917, 18syl 17 . . . . 5 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻)
2013, 19eqbrtrd 5111 . . . 4 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻)
21 gictr 19188 . . . 4 ((𝐺𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ∧ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) → 𝐺𝑔 𝐻)
227, 20, 21syl2anc 584 . . 3 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → 𝐺𝑔 𝐻)
2322ex 412 . 2 ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐵𝐶𝐺𝑔 𝐻))
243, 23impbid2 226 1 ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺𝑔 𝐻𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ifcif 4472   class class class wbr 5089  cfv 6481  cen 8866  Fincfn 8869  0cc0 11006  chash 14237  Basecbs 17120  𝑔 cgic 19170  CycGrpccyg 19789  ℤ/nczn 21439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-gim 19171  df-gic 19172  df-od 19440  df-cmn 19694  df-abl 19695  df-cyg 19790  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator