![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggic | Structured version Visualization version GIF version |
Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.b | ⊢ 𝐵 = (Base‘𝐺) |
cygctb.c | ⊢ 𝐶 = (Base‘𝐻) |
Ref | Expression |
---|---|
cyggic | ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cygctb.c | . . 3 ⊢ 𝐶 = (Base‘𝐻) | |
3 | 1, 2 | gicen 19199 | . 2 ⊢ (𝐺 ≃𝑔 𝐻 → 𝐵 ≈ 𝐶) |
4 | eqid 2724 | . . . . . 6 ⊢ if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
5 | eqid 2724 | . . . . . 6 ⊢ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | |
6 | 1, 4, 5 | cygzn 21454 | . . . . 5 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))) |
7 | 6 | ad2antrr 723 | . . . 4 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))) |
8 | enfi 9187 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐶 → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin)) | |
9 | 8 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin)) |
10 | hasheni 14309 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐶 → (♯‘𝐵) = (♯‘𝐶)) | |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (♯‘𝐵) = (♯‘𝐶)) |
12 | 9, 11 | ifbieq1d 4545 | . . . . . 6 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) |
13 | 12 | fveq2d 6886 | . . . . 5 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
14 | eqid 2724 | . . . . . . . 8 ⊢ if(𝐶 ∈ Fin, (♯‘𝐶), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0) | |
15 | eqid 2724 | . . . . . . . 8 ⊢ (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) | |
16 | 2, 14, 15 | cygzn 21454 | . . . . . . 7 ⊢ (𝐻 ∈ CycGrp → 𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
17 | 16 | ad2antlr 724 | . . . . . 6 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
18 | gicsym 19196 | . . . . . 6 ⊢ (𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻) |
20 | 13, 19 | eqbrtrd 5161 | . . . 4 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) |
21 | gictr 19197 | . . . 4 ⊢ ((𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ∧ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) → 𝐺 ≃𝑔 𝐻) | |
22 | 7, 20, 21 | syl2anc 583 | . . 3 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐺 ≃𝑔 𝐻) |
23 | 22 | ex 412 | . 2 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐵 ≈ 𝐶 → 𝐺 ≃𝑔 𝐻)) |
24 | 3, 23 | impbid2 225 | 1 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ifcif 4521 class class class wbr 5139 ‘cfv 6534 ≈ cen 8933 Fincfn 8936 0cc0 11107 ♯chash 14291 Basecbs 17149 ≃𝑔 cgic 19179 CycGrpccyg 19793 ℤ/nℤczn 21378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8700 df-ec 8702 df-qs 8706 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-acn 9934 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12976 df-fz 13486 df-fl 13758 df-mod 13836 df-seq 13968 df-exp 14029 df-hash 14292 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-imas 17459 df-qus 17460 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-grp 18862 df-minusg 18863 df-sbg 18864 df-mulg 18992 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 df-gim 19180 df-gic 19181 df-od 19444 df-cmn 19698 df-abl 19699 df-cyg 19794 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-rhm 20370 df-subrng 20442 df-subrg 20467 df-lmod 20704 df-lss 20775 df-lsp 20815 df-sra 21017 df-rgmod 21018 df-lidl 21063 df-rsp 21064 df-2idl 21103 df-cnfld 21235 df-zring 21323 df-zrh 21379 df-zn 21382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |