| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cyggic | Structured version Visualization version GIF version | ||
| Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygctb.b | ⊢ 𝐵 = (Base‘𝐺) |
| cygctb.c | ⊢ 𝐶 = (Base‘𝐻) |
| Ref | Expression |
|---|---|
| cyggic | ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cygctb.c | . . 3 ⊢ 𝐶 = (Base‘𝐻) | |
| 3 | 1, 2 | gicen 19192 | . 2 ⊢ (𝐺 ≃𝑔 𝐻 → 𝐵 ≈ 𝐶) |
| 4 | eqid 2729 | . . . . . 6 ⊢ if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | |
| 6 | 1, 4, 5 | cygzn 21512 | . . . . 5 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))) |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))) |
| 8 | enfi 9128 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐶 → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin)) | |
| 9 | 8 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin)) |
| 10 | hasheni 14289 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐶 → (♯‘𝐵) = (♯‘𝐶)) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (♯‘𝐵) = (♯‘𝐶)) |
| 12 | 9, 11 | ifbieq1d 4509 | . . . . . 6 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) |
| 13 | 12 | fveq2d 6844 | . . . . 5 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ if(𝐶 ∈ Fin, (♯‘𝐶), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) | |
| 16 | 2, 14, 15 | cygzn 21512 | . . . . . . 7 ⊢ (𝐻 ∈ CycGrp → 𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
| 17 | 16 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
| 18 | gicsym 19189 | . . . . . 6 ⊢ (𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻) |
| 20 | 13, 19 | eqbrtrd 5124 | . . . 4 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) |
| 21 | gictr 19190 | . . . 4 ⊢ ((𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ∧ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) → 𝐺 ≃𝑔 𝐻) | |
| 22 | 7, 20, 21 | syl2anc 584 | . . 3 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐺 ≃𝑔 𝐻) |
| 23 | 22 | ex 412 | . 2 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐵 ≈ 𝐶 → 𝐺 ≃𝑔 𝐻)) |
| 24 | 3, 23 | impbid2 226 | 1 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 ‘cfv 6499 ≈ cen 8892 Fincfn 8895 0cc0 11044 ♯chash 14271 Basecbs 17155 ≃𝑔 cgic 19172 CycGrpccyg 19791 ℤ/nℤczn 21444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-nsg 19038 df-eqg 19039 df-ghm 19127 df-gim 19173 df-gic 19174 df-od 19442 df-cmn 19696 df-abl 19697 df-cyg 19792 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-sra 21112 df-rgmod 21113 df-lidl 21150 df-rsp 21151 df-2idl 21192 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-zn 21448 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |