MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggic Structured version   Visualization version   GIF version

Theorem cyggic 20316
Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.b 𝐵 = (Base‘𝐺)
cygctb.c 𝐶 = (Base‘𝐻)
Assertion
Ref Expression
cyggic ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺𝑔 𝐻𝐵𝐶))

Proof of Theorem cyggic
StepHypRef Expression
1 cygctb.b . . 3 𝐵 = (Base‘𝐺)
2 cygctb.c . . 3 𝐶 = (Base‘𝐻)
31, 2gicen 18103 . 2 (𝐺𝑔 𝐻𝐵𝐶)
4 eqid 2778 . . . . . 6 if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
5 eqid 2778 . . . . . 6 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))
61, 4, 5cygzn 20314 . . . . 5 (𝐺 ∈ CycGrp → 𝐺𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
76ad2antrr 716 . . . 4 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → 𝐺𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
8 enfi 8464 . . . . . . . 8 (𝐵𝐶 → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin))
98adantl 475 . . . . . . 7 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin))
10 hasheni 13453 . . . . . . . 8 (𝐵𝐶 → (♯‘𝐵) = (♯‘𝐶))
1110adantl 475 . . . . . . 7 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (♯‘𝐵) = (♯‘𝐶))
129, 11ifbieq1d 4330 . . . . . 6 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0))
1312fveq2d 6450 . . . . 5 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)))
14 eqid 2778 . . . . . . . 8 if(𝐶 ∈ Fin, (♯‘𝐶), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)
15 eqid 2778 . . . . . . . 8 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))
162, 14, 15cygzn 20314 . . . . . . 7 (𝐻 ∈ CycGrp → 𝐻𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)))
1716ad2antlr 717 . . . . . 6 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → 𝐻𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)))
18 gicsym 18100 . . . . . 6 (𝐻𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻)
1917, 18syl 17 . . . . 5 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻)
2013, 19eqbrtrd 4908 . . . 4 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻)
21 gictr 18101 . . . 4 ((𝐺𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ∧ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) → 𝐺𝑔 𝐻)
227, 20, 21syl2anc 579 . . 3 (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵𝐶) → 𝐺𝑔 𝐻)
2322ex 403 . 2 ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐵𝐶𝐺𝑔 𝐻))
243, 23impbid2 218 1 ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺𝑔 𝐻𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  ifcif 4307   class class class wbr 4886  cfv 6135  cen 8238  Fincfn 8241  0cc0 10272  chash 13435  Basecbs 16255  𝑔 cgic 18084  CycGrpccyg 18665  ℤ/nczn 20247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-omul 7848  df-er 8026  df-ec 8028  df-qs 8032  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-rp 12138  df-fz 12644  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-imas 16554  df-qus 16555  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-nsg 17976  df-eqg 17977  df-ghm 18042  df-gim 18085  df-gic 18086  df-od 18332  df-cmn 18581  df-abl 18582  df-cyg 18666  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-rnghom 19104  df-subrg 19170  df-lmod 19257  df-lss 19325  df-lsp 19367  df-sra 19569  df-rgmod 19570  df-lidl 19571  df-rsp 19572  df-2idl 19629  df-cnfld 20143  df-zring 20215  df-zrh 20248  df-zn 20251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator