Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmqusker Structured version   Visualization version   GIF version

Theorem rhmqusker 32815
Description: A surjective ring homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
rhmqusker.1 0 = (0g𝐻)
rhmqusker.f (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusker.k 𝐾 = (𝐹 “ { 0 })
rhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
rhmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
rhmqusker.2 (𝜑𝐺 ∈ CRing)
rhmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
rhmqusker (𝜑𝐽 ∈ (𝑄 RingIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem rhmqusker
StepHypRef Expression
1 rhmqusker.1 . . 3 0 = (0g𝐻)
2 rhmqusker.f . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
3 rhmqusker.k . . 3 𝐾 = (𝐹 “ { 0 })
4 rhmqusker.q . . 3 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
5 rhmqusker.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
6 rhmqusker.2 . . 3 (𝜑𝐺 ∈ CRing)
71, 2, 3, 4, 5, 6rhmquskerlem 32814 . 2 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
8 rhmghm 20376 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
92, 8syl 17 . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
10 rhmqusker.s . . . 4 (𝜑 → ran 𝐹 = (Base‘𝐻))
111, 9, 3, 4, 5, 10ghmqusker 32803 . . 3 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
12 eqid 2731 . . . 4 (Base‘𝑄) = (Base‘𝑄)
13 eqid 2731 . . . 4 (Base‘𝐻) = (Base‘𝐻)
1412, 13gimf1o 19178 . . 3 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
1511, 14syl 17 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
1612, 13isrim 20384 . 2 (𝐽 ∈ (𝑄 RingIso 𝐻) ↔ (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
177, 15, 16sylanbrc 582 1 (𝜑𝐽 ∈ (𝑄 RingIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {csn 4629   cuni 4909  cmpt 5232  ccnv 5676  ran crn 5678  cima 5680  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7412  Basecbs 17149  0gc0g 17390   /s cqus 17456   ~QG cqg 19039   GrpHom cghm 19128   GrpIso cgim 19172  CRingccrg 20129   RingHom crh 20361   RingIso crs 20362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-ec 8708  df-qs 8712  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-0g 17392  df-imas 17459  df-qus 17460  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-submnd 18707  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19040  df-nsg 19041  df-eqg 19042  df-ghm 19129  df-gim 19174  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-oppr 20226  df-rhm 20364  df-rim 20365  df-subrg 20460  df-lmod 20617  df-lss 20688  df-lsp 20728  df-sra 20931  df-rgmod 20932  df-lidl 20933  df-rsp 20934  df-2idl 21007
This theorem is referenced by:  ricqusker  32816
  Copyright terms: Public domain W3C validator