![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmqusker | Structured version Visualization version GIF version |
Description: A surjective ring homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
Ref | Expression |
---|---|
rhmqusker.1 | ⊢ 0 = (0g‘𝐻) |
rhmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
rhmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
rhmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
rhmqusker.s | ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
rhmqusker.2 | ⊢ (𝜑 → 𝐺 ∈ CRing) |
rhmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
Ref | Expression |
---|---|
rhmqusker | ⊢ (𝜑 → 𝐽 ∈ (𝑄 RingIso 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmqusker.1 | . . 3 ⊢ 0 = (0g‘𝐻) | |
2 | rhmqusker.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) | |
3 | rhmqusker.k | . . 3 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
4 | rhmqusker.q | . . 3 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
5 | rhmqusker.j | . . 3 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
6 | rhmqusker.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CRing) | |
7 | 1, 2, 3, 4, 5, 6 | rhmquskerlem 32814 | . 2 ⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐻)) |
8 | rhmghm 20376 | . . . . 5 ⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
10 | rhmqusker.s | . . . 4 ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) | |
11 | 1, 9, 3, 4, 5, 10 | ghmqusker 32803 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) |
12 | eqid 2731 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
13 | eqid 2731 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
14 | 12, 13 | gimf1o 19178 | . . 3 ⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
16 | 12, 13 | isrim 20384 | . 2 ⊢ (𝐽 ∈ (𝑄 RingIso 𝐻) ↔ (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
17 | 7, 15, 16 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐽 ∈ (𝑄 RingIso 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {csn 4629 ∪ cuni 4909 ↦ cmpt 5232 ◡ccnv 5676 ran crn 5678 “ cima 5680 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7412 Basecbs 17149 0gc0g 17390 /s cqus 17456 ~QG cqg 19039 GrpHom cghm 19128 GrpIso cgim 19172 CRingccrg 20129 RingHom crh 20361 RingIso crs 20362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-ec 8708 df-qs 8712 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-0g 17392 df-imas 17459 df-qus 17460 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-nsg 19041 df-eqg 19042 df-ghm 19129 df-gim 19174 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-rhm 20364 df-rim 20365 df-subrg 20460 df-lmod 20617 df-lss 20688 df-lsp 20728 df-sra 20931 df-rgmod 20932 df-lidl 20933 df-rsp 20934 df-2idl 21007 |
This theorem is referenced by: ricqusker 32816 |
Copyright terms: Public domain | W3C validator |