MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlinv Structured version   Visualization version   GIF version

Theorem psrlinv 19720
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
psrlinv.o 0 = (0g𝑅)
psrlinv.p + = (+g𝑆)
Assertion
Ref Expression
psrlinv (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psrlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 ovex 6910 . . . . 5 (ℕ0𝑚 𝐼) ∈ V
31, 2rabex2 5009 . . . 4 𝐷 ∈ V
43a1i 11 . . 3 (𝜑𝐷 ∈ V)
5 fvexd 6426 . . 3 ((𝜑𝑥𝐷) → (𝑁‘(𝑋𝑥)) ∈ V)
6 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 eqid 2799 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
9 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
106, 7, 1, 8, 9psrelbas 19702 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1110ffvelrnda 6585 . . 3 ((𝜑𝑥𝐷) → (𝑋𝑥) ∈ (Base‘𝑅))
1210feqmptd 6474 . . . 4 (𝜑𝑋 = (𝑥𝐷 ↦ (𝑋𝑥)))
13 psrnegcl.i . . . . . . 7 𝑁 = (invg𝑅)
14 psrgrp.r . . . . . . 7 (𝜑𝑅 ∈ Grp)
157, 13, 14grpinvf1o 17801 . . . . . 6 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
16 f1of 6356 . . . . . 6 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1715, 16syl 17 . . . . 5 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1817feqmptd 6474 . . . 4 (𝜑𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁𝑦)))
19 fveq2 6411 . . . 4 (𝑦 = (𝑋𝑥) → (𝑁𝑦) = (𝑁‘(𝑋𝑥)))
2011, 12, 18, 19fmptco 6623 . . 3 (𝜑 → (𝑁𝑋) = (𝑥𝐷 ↦ (𝑁‘(𝑋𝑥))))
214, 5, 11, 20, 12offval2 7148 . 2 (𝜑 → ((𝑁𝑋) ∘𝑓 (+g𝑅)𝑋) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
22 eqid 2799 . . 3 (+g𝑅) = (+g𝑅)
23 psrlinv.p . . 3 + = (+g𝑆)
24 psrgrp.i . . . 4 (𝜑𝐼𝑉)
256, 24, 14, 1, 13, 8, 9psrnegcl 19719 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
266, 8, 22, 23, 25, 9psradd 19705 . 2 (𝜑 → ((𝑁𝑋) + 𝑋) = ((𝑁𝑋) ∘𝑓 (+g𝑅)𝑋))
27 psrlinv.o . . . . . 6 0 = (0g𝑅)
287, 22, 27, 13grplinv 17784 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
2914, 11, 28syl2an2r 676 . . . 4 ((𝜑𝑥𝐷) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3029mpteq2dva 4937 . . 3 (𝜑 → (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))) = (𝑥𝐷0 ))
31 fconstmpt 5368 . . 3 (𝐷 × { 0 }) = (𝑥𝐷0 )
3230, 31syl6reqr 2852 . 2 (𝜑 → (𝐷 × { 0 }) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
3321, 26, 323eqtr4d 2843 1 (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  {crab 3093  Vcvv 3385  {csn 4368  cmpt 4922   × cxp 5310  ccnv 5311  cima 5315  ccom 5316  wf 6097  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6878  𝑓 cof 7129  𝑚 cmap 8095  Fincfn 8195  cn 11312  0cn0 11580  Basecbs 16184  +gcplusg 16267  0gc0g 16415  Grpcgrp 17738  invgcminusg 17739   mPwSer cmps 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-tset 16286  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-psr 19679
This theorem is referenced by:  psrgrp  19721  psrneg  19723
  Copyright terms: Public domain W3C validator