![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrlinv | Structured version Visualization version GIF version |
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
psrlinv.o | ⊢ 0 = (0g‘𝑅) |
psrlinv.p | ⊢ + = (+g‘𝑆) |
Ref | Expression |
---|---|
psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrnegcl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | ovex 7438 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
3 | 1, 2 | rabex2 5333 | . . . 4 ⊢ 𝐷 ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
5 | fvexd 6903 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
6 | psrgrp.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
7 | eqid 2732 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | psrnegcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
9 | psrnegcl.z | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 6, 7, 1, 8, 9 | psrelbas 21489 | . . . 4 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
11 | 10 | ffvelcdmda 7083 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
12 | 10 | feqmptd 6957 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
13 | psrnegcl.i | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
14 | psrgrp.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
15 | 7, 13, 14 | grpinvf1o 18889 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
16 | f1of 6830 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
18 | 17 | feqmptd 6957 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
19 | fveq2 6888 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
20 | 11, 12, 18, 19 | fmptco 7123 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
21 | 4, 5, 11, 20, 12 | offval2 7686 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
22 | eqid 2732 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
23 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
24 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
25 | 6, 24, 14, 1, 13, 8, 9 | psrnegcl 21506 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
26 | 6, 8, 22, 23, 25, 9 | psradd 21492 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋)) |
27 | fconstmpt 5736 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
28 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
29 | 7, 22, 28, 13 | grplinv 18870 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
30 | 14, 11, 29 | syl2an2r 683 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
31 | 30 | mpteq2dva 5247 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
32 | 27, 31 | eqtr4id 2791 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
33 | 21, 26, 32 | 3eqtr4d 2782 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 {csn 4627 ↦ cmpt 5230 × cxp 5673 ◡ccnv 5674 “ cima 5678 ∘ ccom 5679 ⟶wf 6536 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ∘f cof 7664 ↑m cmap 8816 Fincfn 8935 ℕcn 12208 ℕ0cn0 12468 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Grpcgrp 18815 invgcminusg 18816 mPwSer cmps 21448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-tset 17212 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-psr 21453 |
This theorem is referenced by: psrgrpOLD 21509 psrneg 21511 |
Copyright terms: Public domain | W3C validator |