| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrlinv | Structured version Visualization version GIF version | ||
| Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
| psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psrlinv.o | ⊢ 0 = (0g‘𝑅) |
| psrlinv.p | ⊢ + = (+g‘𝑆) |
| Ref | Expression |
|---|---|
| psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrnegcl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | ovex 7388 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 3 | 1, 2 | rabex2 5283 | . . . 4 ⊢ 𝐷 ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 5 | fvexd 6846 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
| 6 | psrgrp.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 7 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | psrnegcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | psrnegcl.z | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 6, 7, 1, 8, 9 | psrelbas 21881 | . . . 4 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 11 | 10 | ffvelcdmda 7026 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 12 | 10 | feqmptd 6899 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
| 13 | psrnegcl.i | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 14 | psrgrp.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 15 | 7, 13, 14 | grpinvf1o 18930 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 16 | f1of 6771 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
| 18 | 17 | feqmptd 6899 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
| 19 | fveq2 6831 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
| 20 | 11, 12, 18, 19 | fmptco 7071 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 21 | 4, 5, 11, 20, 12 | offval2 7639 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 22 | eqid 2733 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 23 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 24 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 25 | 6, 24, 14, 1, 13, 8, 9 | psrnegcl 21901 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
| 26 | 6, 8, 22, 23, 25, 9 | psradd 21884 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋)) |
| 27 | fconstmpt 5683 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
| 28 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 29 | 7, 22, 28, 13 | grplinv 18910 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 30 | 14, 11, 29 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 31 | 30 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
| 32 | 27, 31 | eqtr4id 2787 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 33 | 21, 26, 32 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 {csn 4577 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 “ cima 5624 ∘ ccom 5625 ⟶wf 6485 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 Fincfn 8879 ℕcn 12136 ℕ0cn0 12392 Basecbs 17127 +gcplusg 17168 0gc0g 17350 Grpcgrp 18854 invgcminusg 18855 mPwSer cmps 21851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-tset 17187 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-psr 21856 |
| This theorem is referenced by: psrneg 21905 |
| Copyright terms: Public domain | W3C validator |