MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlinv Structured version   Visualization version   GIF version

Theorem psrlinv 21880
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
psrlinv.o 0 = (0g𝑅)
psrlinv.p + = (+g𝑆)
Assertion
Ref Expression
psrlinv (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psrlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 ovex 7386 . . . . 5 (ℕ0m 𝐼) ∈ V
31, 2rabex2 5283 . . . 4 𝐷 ∈ V
43a1i 11 . . 3 (𝜑𝐷 ∈ V)
5 fvexd 6841 . . 3 ((𝜑𝑥𝐷) → (𝑁‘(𝑋𝑥)) ∈ V)
6 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
9 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
106, 7, 1, 8, 9psrelbas 21859 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1110ffvelcdmda 7022 . . 3 ((𝜑𝑥𝐷) → (𝑋𝑥) ∈ (Base‘𝑅))
1210feqmptd 6895 . . . 4 (𝜑𝑋 = (𝑥𝐷 ↦ (𝑋𝑥)))
13 psrnegcl.i . . . . . . 7 𝑁 = (invg𝑅)
14 psrgrp.r . . . . . . 7 (𝜑𝑅 ∈ Grp)
157, 13, 14grpinvf1o 18906 . . . . . 6 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
16 f1of 6768 . . . . . 6 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1715, 16syl 17 . . . . 5 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1817feqmptd 6895 . . . 4 (𝜑𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁𝑦)))
19 fveq2 6826 . . . 4 (𝑦 = (𝑋𝑥) → (𝑁𝑦) = (𝑁‘(𝑋𝑥)))
2011, 12, 18, 19fmptco 7067 . . 3 (𝜑 → (𝑁𝑋) = (𝑥𝐷 ↦ (𝑁‘(𝑋𝑥))))
214, 5, 11, 20, 12offval2 7637 . 2 (𝜑 → ((𝑁𝑋) ∘f (+g𝑅)𝑋) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
22 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
23 psrlinv.p . . 3 + = (+g𝑆)
24 psrgrp.i . . . 4 (𝜑𝐼𝑉)
256, 24, 14, 1, 13, 8, 9psrnegcl 21879 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
266, 8, 22, 23, 25, 9psradd 21862 . 2 (𝜑 → ((𝑁𝑋) + 𝑋) = ((𝑁𝑋) ∘f (+g𝑅)𝑋))
27 fconstmpt 5685 . . 3 (𝐷 × { 0 }) = (𝑥𝐷0 )
28 psrlinv.o . . . . . 6 0 = (0g𝑅)
297, 22, 28, 13grplinv 18886 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3014, 11, 29syl2an2r 685 . . . 4 ((𝜑𝑥𝐷) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3130mpteq2dva 5188 . . 3 (𝜑 → (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))) = (𝑥𝐷0 ))
3227, 31eqtr4id 2783 . 2 (𝜑 → (𝐷 × { 0 }) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
3321, 26, 323eqtr4d 2774 1 (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  ccnv 5622  cima 5626  ccom 5627  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  cn 12146  0cn0 12402  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831   mPwSer cmps 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-psr 21834
This theorem is referenced by:  psrgrpOLD  21882  psrneg  21884
  Copyright terms: Public domain W3C validator