Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrlinv | Structured version Visualization version GIF version |
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
psrlinv.o | ⊢ 0 = (0g‘𝑅) |
psrlinv.p | ⊢ + = (+g‘𝑆) |
Ref | Expression |
---|---|
psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrnegcl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | ovex 7374 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
3 | 1, 2 | rabex2 5282 | . . . 4 ⊢ 𝐷 ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
5 | fvexd 6844 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
6 | psrgrp.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
7 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | psrnegcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
9 | psrnegcl.z | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 6, 7, 1, 8, 9 | psrelbas 21253 | . . . 4 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
11 | 10 | ffvelcdmda 7021 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
12 | 10 | feqmptd 6897 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
13 | psrnegcl.i | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
14 | psrgrp.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
15 | 7, 13, 14 | grpinvf1o 18741 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
16 | f1of 6771 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
18 | 17 | feqmptd 6897 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
19 | fveq2 6829 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
20 | 11, 12, 18, 19 | fmptco 7061 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
21 | 4, 5, 11, 20, 12 | offval2 7619 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
22 | eqid 2737 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
23 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
24 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
25 | 6, 24, 14, 1, 13, 8, 9 | psrnegcl 21270 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
26 | 6, 8, 22, 23, 25, 9 | psradd 21256 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋)) |
27 | fconstmpt 5684 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
28 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
29 | 7, 22, 28, 13 | grplinv 18724 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
30 | 14, 11, 29 | syl2an2r 683 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
31 | 30 | mpteq2dva 5196 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
32 | 27, 31 | eqtr4id 2796 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
33 | 21, 26, 32 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 Vcvv 3442 {csn 4577 ↦ cmpt 5179 × cxp 5622 ◡ccnv 5623 “ cima 5627 ∘ ccom 5628 ⟶wf 6479 –1-1-onto→wf1o 6482 ‘cfv 6483 (class class class)co 7341 ∘f cof 7597 ↑m cmap 8690 Fincfn 8808 ℕcn 12078 ℕ0cn0 12338 Basecbs 17009 +gcplusg 17059 0gc0g 17247 Grpcgrp 18673 invgcminusg 18674 mPwSer cmps 21212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-uz 12688 df-fz 13345 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-tset 17078 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-psr 21217 |
This theorem is referenced by: psrgrp 21272 psrneg 21274 |
Copyright terms: Public domain | W3C validator |