| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrlinv | Structured version Visualization version GIF version | ||
| Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
| psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psrlinv.o | ⊢ 0 = (0g‘𝑅) |
| psrlinv.p | ⊢ + = (+g‘𝑆) |
| Ref | Expression |
|---|---|
| psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrnegcl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | ovex 7420 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 3 | 1, 2 | rabex2 5296 | . . . 4 ⊢ 𝐷 ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 5 | fvexd 6873 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
| 6 | psrgrp.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | psrnegcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | psrnegcl.z | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 6, 7, 1, 8, 9 | psrelbas 21843 | . . . 4 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 11 | 10 | ffvelcdmda 7056 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 12 | 10 | feqmptd 6929 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
| 13 | psrnegcl.i | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 14 | psrgrp.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 15 | 7, 13, 14 | grpinvf1o 18941 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 16 | f1of 6800 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
| 18 | 17 | feqmptd 6929 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
| 19 | fveq2 6858 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
| 20 | 11, 12, 18, 19 | fmptco 7101 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 21 | 4, 5, 11, 20, 12 | offval2 7673 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 22 | eqid 2729 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 23 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 24 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 25 | 6, 24, 14, 1, 13, 8, 9 | psrnegcl 21863 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
| 26 | 6, 8, 22, 23, 25, 9 | psradd 21846 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘f (+g‘𝑅)𝑋)) |
| 27 | fconstmpt 5700 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
| 28 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 29 | 7, 22, 28, 13 | grplinv 18921 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 30 | 14, 11, 29 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 31 | 30 | mpteq2dva 5200 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
| 32 | 27, 31 | eqtr4id 2783 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 33 | 21, 26, 32 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 “ cima 5641 ∘ ccom 5642 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 mPwSer cmps 21813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-psr 21818 |
| This theorem is referenced by: psrgrpOLD 21866 psrneg 21868 |
| Copyright terms: Public domain | W3C validator |