MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlinv Structured version   Visualization version   GIF version

Theorem psrlinv 21271
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
psrlinv.o 0 = (0g𝑅)
psrlinv.p + = (+g𝑆)
Assertion
Ref Expression
psrlinv (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psrlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 ovex 7374 . . . . 5 (ℕ0m 𝐼) ∈ V
31, 2rabex2 5282 . . . 4 𝐷 ∈ V
43a1i 11 . . 3 (𝜑𝐷 ∈ V)
5 fvexd 6844 . . 3 ((𝜑𝑥𝐷) → (𝑁‘(𝑋𝑥)) ∈ V)
6 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 eqid 2737 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
9 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
106, 7, 1, 8, 9psrelbas 21253 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1110ffvelcdmda 7021 . . 3 ((𝜑𝑥𝐷) → (𝑋𝑥) ∈ (Base‘𝑅))
1210feqmptd 6897 . . . 4 (𝜑𝑋 = (𝑥𝐷 ↦ (𝑋𝑥)))
13 psrnegcl.i . . . . . . 7 𝑁 = (invg𝑅)
14 psrgrp.r . . . . . . 7 (𝜑𝑅 ∈ Grp)
157, 13, 14grpinvf1o 18741 . . . . . 6 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
16 f1of 6771 . . . . . 6 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1715, 16syl 17 . . . . 5 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1817feqmptd 6897 . . . 4 (𝜑𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁𝑦)))
19 fveq2 6829 . . . 4 (𝑦 = (𝑋𝑥) → (𝑁𝑦) = (𝑁‘(𝑋𝑥)))
2011, 12, 18, 19fmptco 7061 . . 3 (𝜑 → (𝑁𝑋) = (𝑥𝐷 ↦ (𝑁‘(𝑋𝑥))))
214, 5, 11, 20, 12offval2 7619 . 2 (𝜑 → ((𝑁𝑋) ∘f (+g𝑅)𝑋) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
22 eqid 2737 . . 3 (+g𝑅) = (+g𝑅)
23 psrlinv.p . . 3 + = (+g𝑆)
24 psrgrp.i . . . 4 (𝜑𝐼𝑉)
256, 24, 14, 1, 13, 8, 9psrnegcl 21270 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
266, 8, 22, 23, 25, 9psradd 21256 . 2 (𝜑 → ((𝑁𝑋) + 𝑋) = ((𝑁𝑋) ∘f (+g𝑅)𝑋))
27 fconstmpt 5684 . . 3 (𝐷 × { 0 }) = (𝑥𝐷0 )
28 psrlinv.o . . . . . 6 0 = (0g𝑅)
297, 22, 28, 13grplinv 18724 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3014, 11, 29syl2an2r 683 . . . 4 ((𝜑𝑥𝐷) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3130mpteq2dva 5196 . . 3 (𝜑 → (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))) = (𝑥𝐷0 ))
3227, 31eqtr4id 2796 . 2 (𝜑 → (𝐷 × { 0 }) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
3321, 26, 323eqtr4d 2787 1 (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  {crab 3404  Vcvv 3442  {csn 4577  cmpt 5179   × cxp 5622  ccnv 5623  cima 5627  ccom 5628  wf 6479  1-1-ontowf1o 6482  cfv 6483  (class class class)co 7341  f cof 7597  m cmap 8690  Fincfn 8808  cn 12078  0cn0 12338  Basecbs 17009  +gcplusg 17059  0gc0g 17247  Grpcgrp 18673  invgcminusg 18674   mPwSer cmps 21212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-om 7785  df-1st 7903  df-2nd 7904  df-supp 8052  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fsupp 9231  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-z 12425  df-uz 12688  df-fz 13345  df-struct 16945  df-slot 16980  df-ndx 16992  df-base 17010  df-plusg 17072  df-mulr 17073  df-sca 17075  df-vsca 17076  df-tset 17078  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-psr 21217
This theorem is referenced by:  psrgrp  21272  psrneg  21274
  Copyright terms: Public domain W3C validator