MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invoppggim Structured version   Visualization version   GIF version

Theorem invoppggim 19269
Description: The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypotheses
Ref Expression
invoppggim.o 𝑂 = (oppg𝐺)
invoppggim.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
invoppggim (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂))

Proof of Theorem invoppggim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 invoppggim.o . . . 4 𝑂 = (oppg𝐺)
32, 1oppgbas 19258 . . 3 (Base‘𝐺) = (Base‘𝑂)
4 eqid 2731 . . 3 (+g𝐺) = (+g𝐺)
5 eqid 2731 . . 3 (+g𝑂) = (+g𝑂)
6 id 22 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
72oppggrp 19266 . . 3 (𝐺 ∈ Grp → 𝑂 ∈ Grp)
8 invoppggim.i . . . 4 𝐼 = (invg𝐺)
91, 8grpinvf 18908 . . 3 (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺))
101, 4, 8grpinvadd 18938 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑦)(+g𝐺)(𝐼𝑥)))
11103expb 1119 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑦)(+g𝐺)(𝐼𝑥)))
124, 2, 5oppgplus 19255 . . . 4 ((𝐼𝑥)(+g𝑂)(𝐼𝑦)) = ((𝐼𝑦)(+g𝐺)(𝐼𝑥))
1311, 12eqtr4di 2789 . . 3 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝑂)(𝐼𝑦)))
141, 3, 4, 5, 6, 7, 9, 13isghmd 19140 . 2 (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpHom 𝑂))
151, 8, 6grpinvf1o 18930 . 2 (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)–1-1-onto→(Base‘𝐺))
161, 3isgim 19177 . 2 (𝐼 ∈ (𝐺 GrpIso 𝑂) ↔ (𝐼 ∈ (𝐺 GrpHom 𝑂) ∧ 𝐼:(Base‘𝐺)–1-1-onto→(Base‘𝐺)))
1714, 15, 16sylanbrc 582 1 (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7412  Basecbs 17149  +gcplusg 17202  Grpcgrp 18856  invgcminusg 18857   GrpHom cghm 19128   GrpIso cgim 19172  oppgcoppg 19251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-ghm 19129  df-gim 19174  df-oppg 19252
This theorem is referenced by:  oppggic  19270  symgtrinv  19382  gsumzinv  19855
  Copyright terms: Public domain W3C validator