![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invoppggim | Structured version Visualization version GIF version |
Description: The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
invoppggim.o | ⊢ 𝑂 = (oppg‘𝐺) |
invoppggim.i | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
invoppggim | ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | invoppggim.o | . . . 4 ⊢ 𝑂 = (oppg‘𝐺) | |
3 | 2, 1 | oppgbas 19392 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝑂) |
4 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | eqid 2740 | . . 3 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
6 | id 22 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
7 | 2 | oppggrp 19400 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑂 ∈ Grp) |
8 | invoppggim.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
9 | 1, 8 | grpinvf 19026 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
10 | 1, 4, 8 | grpinvadd 19058 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑦)(+g‘𝐺)(𝐼‘𝑥))) |
11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑦)(+g‘𝐺)(𝐼‘𝑥))) |
12 | 4, 2, 5 | oppgplus 19389 | . . . 4 ⊢ ((𝐼‘𝑥)(+g‘𝑂)(𝐼‘𝑦)) = ((𝐼‘𝑦)(+g‘𝐺)(𝐼‘𝑥)) |
13 | 11, 12 | eqtr4di 2798 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑥)(+g‘𝑂)(𝐼‘𝑦))) |
14 | 1, 3, 4, 5, 6, 7, 9, 13 | isghmd 19265 | . 2 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpHom 𝑂)) |
15 | 1, 8, 6 | grpinvf1o 19049 | . 2 ⊢ (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)–1-1-onto→(Base‘𝐺)) |
16 | 1, 3 | isgim 19302 | . 2 ⊢ (𝐼 ∈ (𝐺 GrpIso 𝑂) ↔ (𝐼 ∈ (𝐺 GrpHom 𝑂) ∧ 𝐼:(Base‘𝐺)–1-1-onto→(Base‘𝐺))) |
17 | 14, 15, 16 | sylanbrc 582 | 1 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 invgcminusg 18974 GrpHom cghm 19252 GrpIso cgim 19297 oppgcoppg 19385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-ghm 19253 df-gim 19299 df-oppg 19386 |
This theorem is referenced by: oppggic 19404 symgtrinv 19514 gsumzinv 19987 |
Copyright terms: Public domain | W3C validator |