MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrnegcl Structured version   Visualization version   GIF version

Theorem psrnegcl 21963
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
Assertion
Ref Expression
psrnegcl (𝜑 → (𝑁𝑋) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem psrnegcl
StepHypRef Expression
1 eqid 2726 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 psrnegcl.i . . . . . 6 𝑁 = (invg𝑅)
3 psrgrp.r . . . . . 6 (𝜑𝑅 ∈ Grp)
41, 2, 3grpinvf1o 19003 . . . . 5 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
5 f1of 6843 . . . . 5 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
64, 5syl 17 . . . 4 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
7 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
117, 1, 8, 9, 10psrelbas 21943 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
12 fco 6752 . . . 4 ((𝑁:(Base‘𝑅)⟶(Base‘𝑅) ∧ 𝑋:𝐷⟶(Base‘𝑅)) → (𝑁𝑋):𝐷⟶(Base‘𝑅))
136, 11, 12syl2anc 582 . . 3 (𝜑 → (𝑁𝑋):𝐷⟶(Base‘𝑅))
14 fvex 6914 . . . 4 (Base‘𝑅) ∈ V
15 ovex 7457 . . . . 5 (ℕ0m 𝐼) ∈ V
168, 15rabex2 5341 . . . 4 𝐷 ∈ V
1714, 16elmap 8900 . . 3 ((𝑁𝑋) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑁𝑋):𝐷⟶(Base‘𝑅))
1813, 17sylibr 233 . 2 (𝜑 → (𝑁𝑋) ∈ ((Base‘𝑅) ↑m 𝐷))
19 psrgrp.i . . 3 (𝜑𝐼𝑉)
207, 1, 8, 9, 19psrbas 21942 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
2118, 20eleqtrrd 2829 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3419  ccnv 5681  cima 5685  ccom 5686  wf 6550  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  m cmap 8855  Fincfn 8974  cn 12264  0cn0 12524  Basecbs 17213  Grpcgrp 18928  invgcminusg 18929   mPwSer cmps 21901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-struct 17149  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-tset 17285  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-psr 21906
This theorem is referenced by:  psrlinv  21964  psrgrpOLD  21966  psrneg  21968
  Copyright terms: Public domain W3C validator