MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrnegcl Structured version   Visualization version   GIF version

Theorem psrnegcl 21075
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
Assertion
Ref Expression
psrnegcl (𝜑 → (𝑁𝑋) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem psrnegcl
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 psrnegcl.i . . . . . 6 𝑁 = (invg𝑅)
3 psrgrp.r . . . . . 6 (𝜑𝑅 ∈ Grp)
41, 2, 3grpinvf1o 18560 . . . . 5 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
5 f1of 6700 . . . . 5 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
64, 5syl 17 . . . 4 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
7 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
117, 1, 8, 9, 10psrelbas 21058 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
12 fco 6608 . . . 4 ((𝑁:(Base‘𝑅)⟶(Base‘𝑅) ∧ 𝑋:𝐷⟶(Base‘𝑅)) → (𝑁𝑋):𝐷⟶(Base‘𝑅))
136, 11, 12syl2anc 583 . . 3 (𝜑 → (𝑁𝑋):𝐷⟶(Base‘𝑅))
14 fvex 6769 . . . 4 (Base‘𝑅) ∈ V
15 ovex 7288 . . . . 5 (ℕ0m 𝐼) ∈ V
168, 15rabex2 5253 . . . 4 𝐷 ∈ V
1714, 16elmap 8617 . . 3 ((𝑁𝑋) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑁𝑋):𝐷⟶(Base‘𝑅))
1813, 17sylibr 233 . 2 (𝜑 → (𝑁𝑋) ∈ ((Base‘𝑅) ↑m 𝐷))
19 psrgrp.i . . 3 (𝜑𝐼𝑉)
207, 1, 8, 9, 19psrbas 21057 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
2118, 20eleqtrrd 2842 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  ccnv 5579  cima 5583  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cn 11903  0cn0 12163  Basecbs 16840  Grpcgrp 18492  invgcminusg 18493   mPwSer cmps 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-psr 21022
This theorem is referenced by:  psrlinv  21076  psrgrp  21077  psrneg  21079
  Copyright terms: Public domain W3C validator