Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txsconnlem Structured version   Visualization version   GIF version

Theorem txsconnlem 35220
Description: Lemma for txsconn 35221. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
txsconn.1 (𝜑𝑅 ∈ Top)
txsconn.2 (𝜑𝑆 ∈ Top)
txsconn.3 (𝜑𝐹 ∈ (II Cn (𝑅 ×t 𝑆)))
txsconn.5 𝐴 = ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)
txsconn.6 𝐵 = ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)
txsconn.7 (𝜑𝐺 ∈ (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)})))
txsconn.8 (𝜑𝐻 ∈ (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)})))
Assertion
Ref Expression
txsconnlem (𝜑𝐹( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)}))

Proof of Theorem txsconnlem
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txsconn.3 . 2 (𝜑𝐹 ∈ (II Cn (𝑅 ×t 𝑆)))
2 fconstmpt 5727 . . 3 ((0[,]1) × {(𝐹‘0)}) = (𝑥 ∈ (0[,]1) ↦ (𝐹‘0))
3 iitopon 24842 . . . . 5 II ∈ (TopOn‘(0[,]1))
43a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
5 txsconn.1 . . . . . 6 (𝜑𝑅 ∈ Top)
6 eqid 2734 . . . . . . 7 𝑅 = 𝑅
76toptopon 22872 . . . . . 6 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
85, 7sylib 218 . . . . 5 (𝜑𝑅 ∈ (TopOn‘ 𝑅))
9 txsconn.2 . . . . . 6 (𝜑𝑆 ∈ Top)
10 eqid 2734 . . . . . . 7 𝑆 = 𝑆
1110toptopon 22872 . . . . . 6 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
129, 11sylib 218 . . . . 5 (𝜑𝑆 ∈ (TopOn‘ 𝑆))
13 txtopon 23546 . . . . 5 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
148, 12, 13syl2anc 584 . . . 4 (𝜑 → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
15 cnf2 23204 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)) ∧ 𝐹 ∈ (II Cn (𝑅 ×t 𝑆))) → 𝐹:(0[,]1)⟶( 𝑅 × 𝑆))
164, 14, 1, 15syl3anc 1372 . . . . 5 (𝜑𝐹:(0[,]1)⟶( 𝑅 × 𝑆))
17 0elunit 13491 . . . . 5 0 ∈ (0[,]1)
18 ffvelcdm 7081 . . . . 5 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ ( 𝑅 × 𝑆))
1916, 17, 18sylancl 586 . . . 4 (𝜑 → (𝐹‘0) ∈ ( 𝑅 × 𝑆))
204, 14, 19cnmptc 23617 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐹‘0)) ∈ (II Cn (𝑅 ×t 𝑆)))
212, 20eqeltrid 2837 . 2 (𝜑 → ((0[,]1) × {(𝐹‘0)}) ∈ (II Cn (𝑅 ×t 𝑆)))
22 txsconn.5 . . . . . . . . . . 11 𝐴 = ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)
23 tx1cn 23564 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
248, 12, 23syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
25 cnco 23221 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (1st ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑅))
261, 24, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑅))
2722, 26eqeltrid 2837 . . . . . . . . . 10 (𝜑𝐴 ∈ (II Cn 𝑅))
28 fconstmpt 5727 . . . . . . . . . . 11 ((0[,]1) × {(𝐴‘0)}) = (𝑥 ∈ (0[,]1) ↦ (𝐴‘0))
29 iiuni 24844 . . . . . . . . . . . . . . 15 (0[,]1) = II
3029, 6cnf 23201 . . . . . . . . . . . . . 14 (𝐴 ∈ (II Cn 𝑅) → 𝐴:(0[,]1)⟶ 𝑅)
3127, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝐴:(0[,]1)⟶ 𝑅)
32 ffvelcdm 7081 . . . . . . . . . . . . 13 ((𝐴:(0[,]1)⟶ 𝑅 ∧ 0 ∈ (0[,]1)) → (𝐴‘0) ∈ 𝑅)
3331, 17, 32sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐴‘0) ∈ 𝑅)
344, 8, 33cnmptc 23617 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐴‘0)) ∈ (II Cn 𝑅))
3528, 34eqeltrid 2837 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐴‘0)}) ∈ (II Cn 𝑅))
3627, 35phtpycn 24952 . . . . . . . . 9 (𝜑 → (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)})) ⊆ ((II ×t II) Cn 𝑅))
37 txsconn.7 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)})))
3836, 37sseldd 3964 . . . . . . . 8 (𝜑𝐺 ∈ ((II ×t II) Cn 𝑅))
39 iitop 24843 . . . . . . . . . 10 II ∈ Top
4039, 39, 29, 29txunii 23548 . . . . . . . . 9 ((0[,]1) × (0[,]1)) = (II ×t II)
4140, 6cnf 23201 . . . . . . . 8 (𝐺 ∈ ((II ×t II) Cn 𝑅) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝑅)
42 ffn 6716 . . . . . . . 8 (𝐺:((0[,]1) × (0[,]1))⟶ 𝑅𝐺 Fn ((0[,]1) × (0[,]1)))
4338, 41, 423syl 18 . . . . . . 7 (𝜑𝐺 Fn ((0[,]1) × (0[,]1)))
44 fnov 7546 . . . . . . 7 (𝐺 Fn ((0[,]1) × (0[,]1)) ↔ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦)))
4543, 44sylib 218 . . . . . 6 (𝜑𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦)))
4645, 38eqeltrrd 2834 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦)) ∈ ((II ×t II) Cn 𝑅))
47 txsconn.6 . . . . . . . . . . 11 𝐵 = ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)
48 tx2cn 23565 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
498, 12, 48syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
50 cnco 23221 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑆))
511, 49, 50syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑆))
5247, 51eqeltrid 2837 . . . . . . . . . 10 (𝜑𝐵 ∈ (II Cn 𝑆))
53 fconstmpt 5727 . . . . . . . . . . 11 ((0[,]1) × {(𝐵‘0)}) = (𝑥 ∈ (0[,]1) ↦ (𝐵‘0))
5429, 10cnf 23201 . . . . . . . . . . . . . 14 (𝐵 ∈ (II Cn 𝑆) → 𝐵:(0[,]1)⟶ 𝑆)
5552, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:(0[,]1)⟶ 𝑆)
56 ffvelcdm 7081 . . . . . . . . . . . . 13 ((𝐵:(0[,]1)⟶ 𝑆 ∧ 0 ∈ (0[,]1)) → (𝐵‘0) ∈ 𝑆)
5755, 17, 56sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐵‘0) ∈ 𝑆)
584, 12, 57cnmptc 23617 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐵‘0)) ∈ (II Cn 𝑆))
5953, 58eqeltrid 2837 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐵‘0)}) ∈ (II Cn 𝑆))
6052, 59phtpycn 24952 . . . . . . . . 9 (𝜑 → (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)})) ⊆ ((II ×t II) Cn 𝑆))
61 txsconn.8 . . . . . . . . 9 (𝜑𝐻 ∈ (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)})))
6260, 61sseldd 3964 . . . . . . . 8 (𝜑𝐻 ∈ ((II ×t II) Cn 𝑆))
6340, 10cnf 23201 . . . . . . . 8 (𝐻 ∈ ((II ×t II) Cn 𝑆) → 𝐻:((0[,]1) × (0[,]1))⟶ 𝑆)
64 ffn 6716 . . . . . . . 8 (𝐻:((0[,]1) × (0[,]1))⟶ 𝑆𝐻 Fn ((0[,]1) × (0[,]1)))
6562, 63, 643syl 18 . . . . . . 7 (𝜑𝐻 Fn ((0[,]1) × (0[,]1)))
66 fnov 7546 . . . . . . 7 (𝐻 Fn ((0[,]1) × (0[,]1)) ↔ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻𝑦)))
6765, 66sylib 218 . . . . . 6 (𝜑𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻𝑦)))
6867, 62eqeltrrd 2834 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻𝑦)) ∈ ((II ×t II) Cn 𝑆))
694, 4, 46, 68cnmpt2t 23628 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩) ∈ ((II ×t II) Cn (𝑅 ×t 𝑆)))
7027, 35phtpyhtpy 24951 . . . . . . . . . 10 (𝜑 → (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)})) ⊆ (𝐴(II Htpy 𝑅)((0[,]1) × {(𝐴‘0)})))
7170, 37sseldd 3964 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐴(II Htpy 𝑅)((0[,]1) × {(𝐴‘0)})))
724, 27, 35, 71htpyi 24943 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑠𝐺0) = (𝐴𝑠) ∧ (𝑠𝐺1) = (((0[,]1) × {(𝐴‘0)})‘𝑠)))
7372simpld 494 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐴𝑠))
7422fveq1i 6887 . . . . . . . 8 (𝐴𝑠) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘𝑠)
75 fvco3 6988 . . . . . . . . 9 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 𝑠 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘𝑠) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)))
7616, 75sylan 580 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘𝑠) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)))
7774, 76eqtrid 2781 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐴𝑠) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)))
78 ffvelcdm 7081 . . . . . . . . 9 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 𝑠 ∈ (0[,]1)) → (𝐹𝑠) ∈ ( 𝑅 × 𝑆))
7916, 78sylan 580 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑠) ∈ ( 𝑅 × 𝑆))
80 fvres 6905 . . . . . . . 8 ((𝐹𝑠) ∈ ( 𝑅 × 𝑆) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)) = (1st ‘(𝐹𝑠)))
8179, 80syl 17 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)) = (1st ‘(𝐹𝑠)))
8273, 77, 813eqtrd 2773 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐺0) = (1st ‘(𝐹𝑠)))
8352, 59phtpyhtpy 24951 . . . . . . . . . 10 (𝜑 → (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)})) ⊆ (𝐵(II Htpy 𝑆)((0[,]1) × {(𝐵‘0)})))
8483, 61sseldd 3964 . . . . . . . . 9 (𝜑𝐻 ∈ (𝐵(II Htpy 𝑆)((0[,]1) × {(𝐵‘0)})))
854, 52, 59, 84htpyi 24943 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑠𝐻0) = (𝐵𝑠) ∧ (𝑠𝐻1) = (((0[,]1) × {(𝐵‘0)})‘𝑠)))
8685simpld 494 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐵𝑠))
8747fveq1i 6887 . . . . . . . 8 (𝐵𝑠) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘𝑠)
88 fvco3 6988 . . . . . . . . 9 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 𝑠 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘𝑠) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)))
8916, 88sylan 580 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘𝑠) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)))
9087, 89eqtrid 2781 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐵𝑠) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)))
91 fvres 6905 . . . . . . . 8 ((𝐹𝑠) ∈ ( 𝑅 × 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)) = (2nd ‘(𝐹𝑠)))
9279, 91syl 17 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹𝑠)) = (2nd ‘(𝐹𝑠)))
9386, 90, 923eqtrd 2773 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (2nd ‘(𝐹𝑠)))
9482, 93opeq12d 4861 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨(𝑠𝐺0), (𝑠𝐻0)⟩ = ⟨(1st ‘(𝐹𝑠)), (2nd ‘(𝐹𝑠))⟩)
95 simpr 484 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
96 oveq12 7422 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝑥𝐺𝑦) = (𝑠𝐺0))
97 oveq12 7422 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝑥𝐻𝑦) = (𝑠𝐻0))
9896, 97opeq12d 4861 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩ = ⟨(𝑠𝐺0), (𝑠𝐻0)⟩)
99 eqid 2734 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)
100 opex 5449 . . . . . . 7 ⟨(𝑠𝐺0), (𝑠𝐻0)⟩ ∈ V
10198, 99, 100ovmpoa 7570 . . . . . 6 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)0) = ⟨(𝑠𝐺0), (𝑠𝐻0)⟩)
10295, 17, 101sylancl 586 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)0) = ⟨(𝑠𝐺0), (𝑠𝐻0)⟩)
103 1st2nd2 8035 . . . . . 6 ((𝐹𝑠) ∈ ( 𝑅 × 𝑆) → (𝐹𝑠) = ⟨(1st ‘(𝐹𝑠)), (2nd ‘(𝐹𝑠))⟩)
10479, 103syl 17 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑠) = ⟨(1st ‘(𝐹𝑠)), (2nd ‘(𝐹𝑠))⟩)
10594, 102, 1043eqtr4d 2779 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)0) = (𝐹𝑠))
10672simprd 495 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐺1) = (((0[,]1) × {(𝐴‘0)})‘𝑠))
107 fvex 6899 . . . . . . . . 9 (𝐴‘0) ∈ V
108107fvconst2 7206 . . . . . . . 8 (𝑠 ∈ (0[,]1) → (((0[,]1) × {(𝐴‘0)})‘𝑠) = (𝐴‘0))
109108adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (((0[,]1) × {(𝐴‘0)})‘𝑠) = (𝐴‘0))
11022fveq1i 6887 . . . . . . . . 9 (𝐴‘0) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0)
111 fvco3 6988 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)))
11216, 17, 111sylancl 586 . . . . . . . . . 10 (𝜑 → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)))
113 fvres 6905 . . . . . . . . . . 11 ((𝐹‘0) ∈ ( 𝑅 × 𝑆) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)) = (1st ‘(𝐹‘0)))
11419, 113syl 17 . . . . . . . . . 10 (𝜑 → ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)) = (1st ‘(𝐹‘0)))
115112, 114eqtrd 2769 . . . . . . . . 9 (𝜑 → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0) = (1st ‘(𝐹‘0)))
116110, 115eqtrid 2781 . . . . . . . 8 (𝜑 → (𝐴‘0) = (1st ‘(𝐹‘0)))
117116adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐴‘0) = (1st ‘(𝐹‘0)))
118106, 109, 1173eqtrd 2773 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐺1) = (1st ‘(𝐹‘0)))
11985simprd 495 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (((0[,]1) × {(𝐵‘0)})‘𝑠))
120 fvex 6899 . . . . . . . . 9 (𝐵‘0) ∈ V
121120fvconst2 7206 . . . . . . . 8 (𝑠 ∈ (0[,]1) → (((0[,]1) × {(𝐵‘0)})‘𝑠) = (𝐵‘0))
122121adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (((0[,]1) × {(𝐵‘0)})‘𝑠) = (𝐵‘0))
12347fveq1i 6887 . . . . . . . . 9 (𝐵‘0) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0)
124 fvco3 6988 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 0 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)))
12516, 17, 124sylancl 586 . . . . . . . . . 10 (𝜑 → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)))
126 fvres 6905 . . . . . . . . . . 11 ((𝐹‘0) ∈ ( 𝑅 × 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)) = (2nd ‘(𝐹‘0)))
12719, 126syl 17 . . . . . . . . . 10 (𝜑 → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘0)) = (2nd ‘(𝐹‘0)))
128125, 127eqtrd 2769 . . . . . . . . 9 (𝜑 → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘0) = (2nd ‘(𝐹‘0)))
129123, 128eqtrid 2781 . . . . . . . 8 (𝜑 → (𝐵‘0) = (2nd ‘(𝐹‘0)))
130129adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐵‘0) = (2nd ‘(𝐹‘0)))
131119, 122, 1303eqtrd 2773 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (2nd ‘(𝐹‘0)))
132118, 131opeq12d 4861 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨(𝑠𝐺1), (𝑠𝐻1)⟩ = ⟨(1st ‘(𝐹‘0)), (2nd ‘(𝐹‘0))⟩)
133 1elunit 13492 . . . . . 6 1 ∈ (0[,]1)
134 oveq12 7422 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝑥𝐺𝑦) = (𝑠𝐺1))
135 oveq12 7422 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝑥𝐻𝑦) = (𝑠𝐻1))
136134, 135opeq12d 4861 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩ = ⟨(𝑠𝐺1), (𝑠𝐻1)⟩)
137 opex 5449 . . . . . . 7 ⟨(𝑠𝐺1), (𝑠𝐻1)⟩ ∈ V
138136, 99, 137ovmpoa 7570 . . . . . 6 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)1) = ⟨(𝑠𝐺1), (𝑠𝐻1)⟩)
13995, 133, 138sylancl 586 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)1) = ⟨(𝑠𝐺1), (𝑠𝐻1)⟩)
140 fvex 6899 . . . . . . . 8 (𝐹‘0) ∈ V
141140fvconst2 7206 . . . . . . 7 (𝑠 ∈ (0[,]1) → (((0[,]1) × {(𝐹‘0)})‘𝑠) = (𝐹‘0))
142141adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (((0[,]1) × {(𝐹‘0)})‘𝑠) = (𝐹‘0))
14319adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘0) ∈ ( 𝑅 × 𝑆))
144 1st2nd2 8035 . . . . . . 7 ((𝐹‘0) ∈ ( 𝑅 × 𝑆) → (𝐹‘0) = ⟨(1st ‘(𝐹‘0)), (2nd ‘(𝐹‘0))⟩)
145143, 144syl 17 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘0) = ⟨(1st ‘(𝐹‘0)), (2nd ‘(𝐹‘0))⟩)
146142, 145eqtrd 2769 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((0[,]1) × {(𝐹‘0)})‘𝑠) = ⟨(1st ‘(𝐹‘0)), (2nd ‘(𝐹‘0))⟩)
147132, 139, 1463eqtr4d 2779 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)1) = (((0[,]1) × {(𝐹‘0)})‘𝑠))
14827, 35, 37phtpyi 24953 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐺𝑠) = (𝐴‘0) ∧ (1𝐺𝑠) = (𝐴‘1)))
149148simpld 494 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐴‘0))
150149, 117eqtrd 2769 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (1st ‘(𝐹‘0)))
15152, 59, 61phtpyi 24953 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐵‘0) ∧ (1𝐻𝑠) = (𝐵‘1)))
152151simpld 494 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐵‘0))
153152, 130eqtrd 2769 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (2nd ‘(𝐹‘0)))
154150, 153opeq12d 4861 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨(0𝐺𝑠), (0𝐻𝑠)⟩ = ⟨(1st ‘(𝐹‘0)), (2nd ‘(𝐹‘0))⟩)
155 oveq12 7422 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐺𝑦) = (0𝐺𝑠))
156 oveq12 7422 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐻𝑦) = (0𝐻𝑠))
157155, 156opeq12d 4861 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩ = ⟨(0𝐺𝑠), (0𝐻𝑠)⟩)
158 opex 5449 . . . . . . 7 ⟨(0𝐺𝑠), (0𝐻𝑠)⟩ ∈ V
159157, 99, 158ovmpoa 7570 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)𝑠) = ⟨(0𝐺𝑠), (0𝐻𝑠)⟩)
16017, 95, 159sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)𝑠) = ⟨(0𝐺𝑠), (0𝐻𝑠)⟩)
161154, 160, 1453eqtr4d 2779 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)𝑠) = (𝐹‘0))
162148simprd 495 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐴‘1))
16322fveq1i 6887 . . . . . . . . . 10 (𝐴‘1) = (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘1)
164 fvco3 6988 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)))
16516, 133, 164sylancl 586 . . . . . . . . . 10 (𝜑 → (((1st ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)))
166163, 165eqtrid 2781 . . . . . . . . 9 (𝜑 → (𝐴‘1) = ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)))
167 ffvelcdm 7081 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ ( 𝑅 × 𝑆))
16816, 133, 167sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹‘1) ∈ ( 𝑅 × 𝑆))
169 fvres 6905 . . . . . . . . . 10 ((𝐹‘1) ∈ ( 𝑅 × 𝑆) → ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)) = (1st ‘(𝐹‘1)))
170168, 169syl 17 . . . . . . . . 9 (𝜑 → ((1st ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)) = (1st ‘(𝐹‘1)))
171166, 170eqtrd 2769 . . . . . . . 8 (𝜑 → (𝐴‘1) = (1st ‘(𝐹‘1)))
172171adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐴‘1) = (1st ‘(𝐹‘1)))
173162, 172eqtrd 2769 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (1st ‘(𝐹‘1)))
174151simprd 495 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐵‘1))
17547fveq1i 6887 . . . . . . . . . 10 (𝐵‘1) = (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘1)
176 fvco3 6988 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶( 𝑅 × 𝑆) ∧ 1 ∈ (0[,]1)) → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)))
17716, 133, 176sylancl 586 . . . . . . . . . 10 (𝜑 → (((2nd ↾ ( 𝑅 × 𝑆)) ∘ 𝐹)‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)))
178175, 177eqtrid 2781 . . . . . . . . 9 (𝜑 → (𝐵‘1) = ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)))
179 fvres 6905 . . . . . . . . . 10 ((𝐹‘1) ∈ ( 𝑅 × 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)) = (2nd ‘(𝐹‘1)))
180168, 179syl 17 . . . . . . . . 9 (𝜑 → ((2nd ↾ ( 𝑅 × 𝑆))‘(𝐹‘1)) = (2nd ‘(𝐹‘1)))
181178, 180eqtrd 2769 . . . . . . . 8 (𝜑 → (𝐵‘1) = (2nd ‘(𝐹‘1)))
182181adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐵‘1) = (2nd ‘(𝐹‘1)))
183174, 182eqtrd 2769 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (2nd ‘(𝐹‘1)))
184173, 183opeq12d 4861 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨(1𝐺𝑠), (1𝐻𝑠)⟩ = ⟨(1st ‘(𝐹‘1)), (2nd ‘(𝐹‘1))⟩)
185 oveq12 7422 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐺𝑦) = (1𝐺𝑠))
186 oveq12 7422 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐻𝑦) = (1𝐻𝑠))
187185, 186opeq12d 4861 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩ = ⟨(1𝐺𝑠), (1𝐻𝑠)⟩)
188 opex 5449 . . . . . . 7 ⟨(1𝐺𝑠), (1𝐻𝑠)⟩ ∈ V
189187, 99, 188ovmpoa 7570 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)𝑠) = ⟨(1𝐺𝑠), (1𝐻𝑠)⟩)
190133, 95, 189sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)𝑠) = ⟨(1𝐺𝑠), (1𝐻𝑠)⟩)
191168adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘1) ∈ ( 𝑅 × 𝑆))
192 1st2nd2 8035 . . . . . 6 ((𝐹‘1) ∈ ( 𝑅 × 𝑆) → (𝐹‘1) = ⟨(1st ‘(𝐹‘1)), (2nd ‘(𝐹‘1))⟩)
193191, 192syl 17 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘1) = ⟨(1st ‘(𝐹‘1)), (2nd ‘(𝐹‘1))⟩)
194184, 190, 1933eqtr4d 2779 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩)𝑠) = (𝐹‘1))
1951, 21, 69, 105, 147, 161, 194isphtpy2d 24956 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ⟨(𝑥𝐺𝑦), (𝑥𝐻𝑦)⟩) ∈ (𝐹(PHtpy‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})))
196195ne0d 4322 . 2 (𝜑 → (𝐹(PHtpy‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) ≠ ∅)
197 isphtpc 24963 . 2 (𝐹( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)}) ↔ (𝐹 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ ((0[,]1) × {(𝐹‘0)}) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝐹(PHtpy‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) ≠ ∅))
1981, 21, 196, 197syl3anbrc 1343 1 (𝜑𝐹( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  c0 4313  {csn 4606  cop 4612   cuni 4887   class class class wbr 5123  cmpt 5205   × cxp 5663  cres 5667  ccom 5669   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415  1st c1st 7994  2nd c2nd 7995  0cc0 11137  1c1 11138  [,]cicc 13372  Topctop 22848  TopOnctopon 22865   Cn ccn 23179   ×t ctx 23515  IIcii 24838   Htpy chtpy 24936  PHtpycphtpy 24937  phcphtpc 24938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-topgen 17460  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-top 22849  df-topon 22866  df-bases 22901  df-cn 23182  df-cnp 23183  df-tx 23517  df-ii 24840  df-htpy 24939  df-phtpy 24940  df-phtpc 24961
This theorem is referenced by:  txsconn  35221
  Copyright terms: Public domain W3C validator