Step | Hyp | Ref
| Expression |
1 | | txsconn.3 |
. 2
β’ (π β πΉ β (II Cn (π
Γt π))) |
2 | | fconstmpt 5736 |
. . 3
β’ ((0[,]1)
Γ {(πΉβ0)}) =
(π₯ β (0[,]1) β¦
(πΉβ0)) |
3 | | iitopon 24386 |
. . . . 5
β’ II β
(TopOnβ(0[,]1)) |
4 | 3 | a1i 11 |
. . . 4
β’ (π β II β
(TopOnβ(0[,]1))) |
5 | | txsconn.1 |
. . . . . 6
β’ (π β π
β Top) |
6 | | eqid 2732 |
. . . . . . 7
β’ βͺ π
=
βͺ π
|
7 | 6 | toptopon 22410 |
. . . . . 6
β’ (π
β Top β π
β (TopOnββͺ π
)) |
8 | 5, 7 | sylib 217 |
. . . . 5
β’ (π β π
β (TopOnββͺ π
)) |
9 | | txsconn.2 |
. . . . . 6
β’ (π β π β Top) |
10 | | eqid 2732 |
. . . . . . 7
β’ βͺ π =
βͺ π |
11 | 10 | toptopon 22410 |
. . . . . 6
β’ (π β Top β π β (TopOnββͺ π)) |
12 | 9, 11 | sylib 217 |
. . . . 5
β’ (π β π β (TopOnββͺ π)) |
13 | | txtopon 23086 |
. . . . 5
β’ ((π
β (TopOnββͺ π
)
β§ π β
(TopOnββͺ π)) β (π
Γt π) β (TopOnβ(βͺ π
Γ βͺ π))) |
14 | 8, 12, 13 | syl2anc 584 |
. . . 4
β’ (π β (π
Γt π) β (TopOnβ(βͺ π
Γ βͺ π))) |
15 | | cnf2 22744 |
. . . . . 6
β’ ((II
β (TopOnβ(0[,]1)) β§ (π
Γt π) β (TopOnβ(βͺ π
Γ βͺ π)) β§ πΉ β (II Cn (π
Γt π))) β πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π)) |
16 | 4, 14, 1, 15 | syl3anc 1371 |
. . . . 5
β’ (π β πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π)) |
17 | | 0elunit 13442 |
. . . . 5
β’ 0 β
(0[,]1) |
18 | | ffvelcdm 7080 |
. . . . 5
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ 0 β (0[,]1)) β (πΉβ0) β (βͺ π
Γ βͺ π)) |
19 | 16, 17, 18 | sylancl 586 |
. . . 4
β’ (π β (πΉβ0) β (βͺ π
Γ βͺ π)) |
20 | 4, 14, 19 | cnmptc 23157 |
. . 3
β’ (π β (π₯ β (0[,]1) β¦ (πΉβ0)) β (II Cn (π
Γt π))) |
21 | 2, 20 | eqeltrid 2837 |
. 2
β’ (π β ((0[,]1) Γ {(πΉβ0)}) β (II Cn (π
Γt π))) |
22 | | txsconn.5 |
. . . . . . . . . . 11
β’ π΄ = ((1st βΎ
(βͺ π
Γ βͺ π)) β πΉ) |
23 | | tx1cn 23104 |
. . . . . . . . . . . . 13
β’ ((π
β (TopOnββͺ π
)
β§ π β
(TopOnββͺ π)) β (1st βΎ (βͺ π
Γ βͺ π)) β ((π
Γt π) Cn π
)) |
24 | 8, 12, 23 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β (1st βΎ
(βͺ π
Γ βͺ π)) β ((π
Γt π) Cn π
)) |
25 | | cnco 22761 |
. . . . . . . . . . . 12
β’ ((πΉ β (II Cn (π
Γt π)) β§ (1st βΎ
(βͺ π
Γ βͺ π)) β ((π
Γt π) Cn π
)) β ((1st βΎ (βͺ π
Γ βͺ π)) β πΉ) β (II Cn π
)) |
26 | 1, 24, 25 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β ((1st βΎ
(βͺ π
Γ βͺ π)) β πΉ) β (II Cn π
)) |
27 | 22, 26 | eqeltrid 2837 |
. . . . . . . . . 10
β’ (π β π΄ β (II Cn π
)) |
28 | | fconstmpt 5736 |
. . . . . . . . . . 11
β’ ((0[,]1)
Γ {(π΄β0)}) =
(π₯ β (0[,]1) β¦
(π΄β0)) |
29 | | iiuni 24388 |
. . . . . . . . . . . . . . 15
β’ (0[,]1) =
βͺ II |
30 | 29, 6 | cnf 22741 |
. . . . . . . . . . . . . 14
β’ (π΄ β (II Cn π
) β π΄:(0[,]1)βΆβͺ
π
) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π΄:(0[,]1)βΆβͺ
π
) |
32 | | ffvelcdm 7080 |
. . . . . . . . . . . . 13
β’ ((π΄:(0[,]1)βΆβͺ π
β§ 0 β (0[,]1)) β (π΄β0) β βͺ π
) |
33 | 31, 17, 32 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β (π΄β0) β βͺ π
) |
34 | 4, 8, 33 | cnmptc 23157 |
. . . . . . . . . . 11
β’ (π β (π₯ β (0[,]1) β¦ (π΄β0)) β (II Cn π
)) |
35 | 28, 34 | eqeltrid 2837 |
. . . . . . . . . 10
β’ (π β ((0[,]1) Γ {(π΄β0)}) β (II Cn π
)) |
36 | 27, 35 | phtpycn 24490 |
. . . . . . . . 9
β’ (π β (π΄(PHtpyβπ
)((0[,]1) Γ {(π΄β0)})) β ((II
Γt II) Cn π
)) |
37 | | txsconn.7 |
. . . . . . . . 9
β’ (π β πΊ β (π΄(PHtpyβπ
)((0[,]1) Γ {(π΄β0)}))) |
38 | 36, 37 | sseldd 3982 |
. . . . . . . 8
β’ (π β πΊ β ((II Γt II) Cn
π
)) |
39 | | iitop 24387 |
. . . . . . . . . 10
β’ II β
Top |
40 | 39, 39, 29, 29 | txunii 23088 |
. . . . . . . . 9
β’ ((0[,]1)
Γ (0[,]1)) = βͺ (II Γt
II) |
41 | 40, 6 | cnf 22741 |
. . . . . . . 8
β’ (πΊ β ((II Γt
II) Cn π
) β πΊ:((0[,]1) Γ
(0[,]1))βΆβͺ π
) |
42 | | ffn 6714 |
. . . . . . . 8
β’ (πΊ:((0[,]1) Γ
(0[,]1))βΆβͺ π
β πΊ Fn ((0[,]1) Γ
(0[,]1))) |
43 | 38, 41, 42 | 3syl 18 |
. . . . . . 7
β’ (π β πΊ Fn ((0[,]1) Γ
(0[,]1))) |
44 | | fnov 7536 |
. . . . . . 7
β’ (πΊ Fn ((0[,]1) Γ (0[,]1))
β πΊ = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯πΊπ¦))) |
45 | 43, 44 | sylib 217 |
. . . . . 6
β’ (π β πΊ = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯πΊπ¦))) |
46 | 45, 38 | eqeltrrd 2834 |
. . . . 5
β’ (π β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯πΊπ¦)) β ((II Γt II) Cn
π
)) |
47 | | txsconn.6 |
. . . . . . . . . . 11
β’ π΅ = ((2nd βΎ
(βͺ π
Γ βͺ π)) β πΉ) |
48 | | tx2cn 23105 |
. . . . . . . . . . . . 13
β’ ((π
β (TopOnββͺ π
)
β§ π β
(TopOnββͺ π)) β (2nd βΎ (βͺ π
Γ βͺ π)) β ((π
Γt π) Cn π)) |
49 | 8, 12, 48 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β (2nd βΎ
(βͺ π
Γ βͺ π)) β ((π
Γt π) Cn π)) |
50 | | cnco 22761 |
. . . . . . . . . . . 12
β’ ((πΉ β (II Cn (π
Γt π)) β§ (2nd βΎ
(βͺ π
Γ βͺ π)) β ((π
Γt π) Cn π)) β ((2nd βΎ (βͺ π
Γ βͺ π)) β πΉ) β (II Cn π)) |
51 | 1, 49, 50 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β ((2nd βΎ
(βͺ π
Γ βͺ π)) β πΉ) β (II Cn π)) |
52 | 47, 51 | eqeltrid 2837 |
. . . . . . . . . 10
β’ (π β π΅ β (II Cn π)) |
53 | | fconstmpt 5736 |
. . . . . . . . . . 11
β’ ((0[,]1)
Γ {(π΅β0)}) =
(π₯ β (0[,]1) β¦
(π΅β0)) |
54 | 29, 10 | cnf 22741 |
. . . . . . . . . . . . . 14
β’ (π΅ β (II Cn π) β π΅:(0[,]1)βΆβͺ
π) |
55 | 52, 54 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π΅:(0[,]1)βΆβͺ
π) |
56 | | ffvelcdm 7080 |
. . . . . . . . . . . . 13
β’ ((π΅:(0[,]1)βΆβͺ π
β§ 0 β (0[,]1)) β (π΅β0) β βͺ π) |
57 | 55, 17, 56 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β (π΅β0) β βͺ π) |
58 | 4, 12, 57 | cnmptc 23157 |
. . . . . . . . . . 11
β’ (π β (π₯ β (0[,]1) β¦ (π΅β0)) β (II Cn π)) |
59 | 53, 58 | eqeltrid 2837 |
. . . . . . . . . 10
β’ (π β ((0[,]1) Γ {(π΅β0)}) β (II Cn π)) |
60 | 52, 59 | phtpycn 24490 |
. . . . . . . . 9
β’ (π β (π΅(PHtpyβπ)((0[,]1) Γ {(π΅β0)})) β ((II
Γt II) Cn π)) |
61 | | txsconn.8 |
. . . . . . . . 9
β’ (π β π» β (π΅(PHtpyβπ)((0[,]1) Γ {(π΅β0)}))) |
62 | 60, 61 | sseldd 3982 |
. . . . . . . 8
β’ (π β π» β ((II Γt II) Cn
π)) |
63 | 40, 10 | cnf 22741 |
. . . . . . . 8
β’ (π» β ((II Γt
II) Cn π) β π»:((0[,]1) Γ
(0[,]1))βΆβͺ π) |
64 | | ffn 6714 |
. . . . . . . 8
β’ (π»:((0[,]1) Γ
(0[,]1))βΆβͺ π β π» Fn ((0[,]1) Γ
(0[,]1))) |
65 | 62, 63, 64 | 3syl 18 |
. . . . . . 7
β’ (π β π» Fn ((0[,]1) Γ
(0[,]1))) |
66 | | fnov 7536 |
. . . . . . 7
β’ (π» Fn ((0[,]1) Γ (0[,]1))
β π» = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯π»π¦))) |
67 | 65, 66 | sylib 217 |
. . . . . 6
β’ (π β π» = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯π»π¦))) |
68 | 67, 62 | eqeltrrd 2834 |
. . . . 5
β’ (π β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ (π₯π»π¦)) β ((II Γt II) Cn
π)) |
69 | 4, 4, 46, 68 | cnmpt2t 23168 |
. . . 4
β’ (π β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©) β ((II Γt II)
Cn (π
Γt
π))) |
70 | 27, 35 | phtpyhtpy 24489 |
. . . . . . . . . 10
β’ (π β (π΄(PHtpyβπ
)((0[,]1) Γ {(π΄β0)})) β (π΄(II Htpy π
)((0[,]1) Γ {(π΄β0)}))) |
71 | 70, 37 | sseldd 3982 |
. . . . . . . . 9
β’ (π β πΊ β (π΄(II Htpy π
)((0[,]1) Γ {(π΄β0)}))) |
72 | 4, 27, 35, 71 | htpyi 24481 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β ((π πΊ0) = (π΄βπ ) β§ (π πΊ1) = (((0[,]1) Γ {(π΄β0)})βπ ))) |
73 | 72 | simpld 495 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π πΊ0) = (π΄βπ )) |
74 | 22 | fveq1i 6889 |
. . . . . . . 8
β’ (π΄βπ ) = (((1st βΎ (βͺ π
Γ βͺ π)) β πΉ)βπ ) |
75 | | fvco3 6987 |
. . . . . . . . 9
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ π β (0[,]1)) β (((1st
βΎ (βͺ π
Γ βͺ π)) β πΉ)βπ ) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβπ ))) |
76 | 16, 75 | sylan 580 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β (((1st
βΎ (βͺ π
Γ βͺ π)) β πΉ)βπ ) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβπ ))) |
77 | 74, 76 | eqtrid 2784 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π΄βπ ) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβπ ))) |
78 | | ffvelcdm 7080 |
. . . . . . . . 9
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ π β (0[,]1)) β (πΉβπ ) β (βͺ π
Γ βͺ π)) |
79 | 16, 78 | sylan 580 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β (πΉβπ ) β (βͺ π
Γ βͺ π)) |
80 | | fvres 6907 |
. . . . . . . 8
β’ ((πΉβπ ) β (βͺ π
Γ βͺ π)
β ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβπ )) = (1st β(πΉβπ ))) |
81 | 79, 80 | syl 17 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β ((1st
βΎ (βͺ π
Γ βͺ π))β(πΉβπ )) = (1st β(πΉβπ ))) |
82 | 73, 77, 81 | 3eqtrd 2776 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (π πΊ0) = (1st β(πΉβπ ))) |
83 | 52, 59 | phtpyhtpy 24489 |
. . . . . . . . . 10
β’ (π β (π΅(PHtpyβπ)((0[,]1) Γ {(π΅β0)})) β (π΅(II Htpy π)((0[,]1) Γ {(π΅β0)}))) |
84 | 83, 61 | sseldd 3982 |
. . . . . . . . 9
β’ (π β π» β (π΅(II Htpy π)((0[,]1) Γ {(π΅β0)}))) |
85 | 4, 52, 59, 84 | htpyi 24481 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β ((π π»0) = (π΅βπ ) β§ (π π»1) = (((0[,]1) Γ {(π΅β0)})βπ ))) |
86 | 85 | simpld 495 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π π»0) = (π΅βπ )) |
87 | 47 | fveq1i 6889 |
. . . . . . . 8
β’ (π΅βπ ) = (((2nd βΎ (βͺ π
Γ βͺ π)) β πΉ)βπ ) |
88 | | fvco3 6987 |
. . . . . . . . 9
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ π β (0[,]1)) β (((2nd
βΎ (βͺ π
Γ βͺ π)) β πΉ)βπ ) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβπ ))) |
89 | 16, 88 | sylan 580 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β (((2nd
βΎ (βͺ π
Γ βͺ π)) β πΉ)βπ ) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβπ ))) |
90 | 87, 89 | eqtrid 2784 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π΅βπ ) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβπ ))) |
91 | | fvres 6907 |
. . . . . . . 8
β’ ((πΉβπ ) β (βͺ π
Γ βͺ π)
β ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβπ )) = (2nd β(πΉβπ ))) |
92 | 79, 91 | syl 17 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β ((2nd
βΎ (βͺ π
Γ βͺ π))β(πΉβπ )) = (2nd β(πΉβπ ))) |
93 | 86, 90, 92 | 3eqtrd 2776 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (π π»0) = (2nd β(πΉβπ ))) |
94 | 82, 93 | opeq12d 4880 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β β¨(π πΊ0), (π π»0)β© = β¨(1st
β(πΉβπ )), (2nd
β(πΉβπ ))β©) |
95 | | simpr 485 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β π β (0[,]1)) |
96 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 0) β (π₯πΊπ¦) = (π πΊ0)) |
97 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 0) β (π₯π»π¦) = (π π»0)) |
98 | 96, 97 | opeq12d 4880 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 0) β β¨(π₯πΊπ¦), (π₯π»π¦)β© = β¨(π πΊ0), (π π»0)β©) |
99 | | eqid 2732 |
. . . . . . 7
β’ (π₯ β (0[,]1), π¦ β (0[,]1) β¦
β¨(π₯πΊπ¦), (π₯π»π¦)β©) = (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©) |
100 | | opex 5463 |
. . . . . . 7
β’
β¨(π πΊ0), (π π»0)β© β V |
101 | 98, 99, 100 | ovmpoa 7559 |
. . . . . 6
β’ ((π β (0[,]1) β§ 0 β
(0[,]1)) β (π (π₯ β (0[,]1), π¦ β (0[,]1) β¦
β¨(π₯πΊπ¦), (π₯π»π¦)β©)0) = β¨(π πΊ0), (π π»0)β©) |
102 | 95, 17, 101 | sylancl 586 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (π (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)0) = β¨(π πΊ0), (π π»0)β©) |
103 | | 1st2nd2 8010 |
. . . . . 6
β’ ((πΉβπ ) β (βͺ π
Γ βͺ π)
β (πΉβπ ) = β¨(1st
β(πΉβπ )), (2nd
β(πΉβπ ))β©) |
104 | 79, 103 | syl 17 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (πΉβπ ) = β¨(1st β(πΉβπ )), (2nd β(πΉβπ ))β©) |
105 | 94, 102, 104 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (π (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)0) = (πΉβπ )) |
106 | 72 | simprd 496 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π πΊ1) = (((0[,]1) Γ {(π΄β0)})βπ )) |
107 | | fvex 6901 |
. . . . . . . . 9
β’ (π΄β0) β
V |
108 | 107 | fvconst2 7201 |
. . . . . . . 8
β’ (π β (0[,]1) β (((0[,]1)
Γ {(π΄β0)})βπ ) = (π΄β0)) |
109 | 108 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (((0[,]1) Γ
{(π΄β0)})βπ ) = (π΄β0)) |
110 | 22 | fveq1i 6889 |
. . . . . . . . 9
β’ (π΄β0) = (((1st
βΎ (βͺ π
Γ βͺ π)) β πΉ)β0) |
111 | | fvco3 6987 |
. . . . . . . . . . 11
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ 0 β (0[,]1)) β
(((1st βΎ (βͺ π
Γ βͺ π)) β πΉ)β0) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ0))) |
112 | 16, 17, 111 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (((1st βΎ
(βͺ π
Γ βͺ π)) β πΉ)β0) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ0))) |
113 | | fvres 6907 |
. . . . . . . . . . 11
β’ ((πΉβ0) β (βͺ π
Γ βͺ π) β ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ0)) = (1st β(πΉβ0))) |
114 | 19, 113 | syl 17 |
. . . . . . . . . 10
β’ (π β ((1st βΎ
(βͺ π
Γ βͺ π))β(πΉβ0)) = (1st β(πΉβ0))) |
115 | 112, 114 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β (((1st βΎ
(βͺ π
Γ βͺ π)) β πΉ)β0) = (1st β(πΉβ0))) |
116 | 110, 115 | eqtrid 2784 |
. . . . . . . 8
β’ (π β (π΄β0) = (1st β(πΉβ0))) |
117 | 116 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π΄β0) = (1st β(πΉβ0))) |
118 | 106, 109,
117 | 3eqtrd 2776 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (π πΊ1) = (1st β(πΉβ0))) |
119 | 85 | simprd 496 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π π»1) = (((0[,]1) Γ {(π΅β0)})βπ )) |
120 | | fvex 6901 |
. . . . . . . . 9
β’ (π΅β0) β
V |
121 | 120 | fvconst2 7201 |
. . . . . . . 8
β’ (π β (0[,]1) β (((0[,]1)
Γ {(π΅β0)})βπ ) = (π΅β0)) |
122 | 121 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (((0[,]1) Γ
{(π΅β0)})βπ ) = (π΅β0)) |
123 | 47 | fveq1i 6889 |
. . . . . . . . 9
β’ (π΅β0) = (((2nd
βΎ (βͺ π
Γ βͺ π)) β πΉ)β0) |
124 | | fvco3 6987 |
. . . . . . . . . . 11
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ 0 β (0[,]1)) β
(((2nd βΎ (βͺ π
Γ βͺ π)) β πΉ)β0) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ0))) |
125 | 16, 17, 124 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (((2nd βΎ
(βͺ π
Γ βͺ π)) β πΉ)β0) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ0))) |
126 | | fvres 6907 |
. . . . . . . . . . 11
β’ ((πΉβ0) β (βͺ π
Γ βͺ π) β ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ0)) = (2nd β(πΉβ0))) |
127 | 19, 126 | syl 17 |
. . . . . . . . . 10
β’ (π β ((2nd βΎ
(βͺ π
Γ βͺ π))β(πΉβ0)) = (2nd β(πΉβ0))) |
128 | 125, 127 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β (((2nd βΎ
(βͺ π
Γ βͺ π)) β πΉ)β0) = (2nd β(πΉβ0))) |
129 | 123, 128 | eqtrid 2784 |
. . . . . . . 8
β’ (π β (π΅β0) = (2nd β(πΉβ0))) |
130 | 129 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π΅β0) = (2nd β(πΉβ0))) |
131 | 119, 122,
130 | 3eqtrd 2776 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (π π»1) = (2nd β(πΉβ0))) |
132 | 118, 131 | opeq12d 4880 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β β¨(π πΊ1), (π π»1)β© = β¨(1st
β(πΉβ0)),
(2nd β(πΉβ0))β©) |
133 | | 1elunit 13443 |
. . . . . 6
β’ 1 β
(0[,]1) |
134 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 1) β (π₯πΊπ¦) = (π πΊ1)) |
135 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 1) β (π₯π»π¦) = (π π»1)) |
136 | 134, 135 | opeq12d 4880 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 1) β β¨(π₯πΊπ¦), (π₯π»π¦)β© = β¨(π πΊ1), (π π»1)β©) |
137 | | opex 5463 |
. . . . . . 7
β’
β¨(π πΊ1), (π π»1)β© β V |
138 | 136, 99, 137 | ovmpoa 7559 |
. . . . . 6
β’ ((π β (0[,]1) β§ 1 β
(0[,]1)) β (π (π₯ β (0[,]1), π¦ β (0[,]1) β¦
β¨(π₯πΊπ¦), (π₯π»π¦)β©)1) = β¨(π πΊ1), (π π»1)β©) |
139 | 95, 133, 138 | sylancl 586 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (π (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)1) = β¨(π πΊ1), (π π»1)β©) |
140 | | fvex 6901 |
. . . . . . . 8
β’ (πΉβ0) β
V |
141 | 140 | fvconst2 7201 |
. . . . . . 7
β’ (π β (0[,]1) β (((0[,]1)
Γ {(πΉβ0)})βπ ) = (πΉβ0)) |
142 | 141 | adantl 482 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (((0[,]1) Γ
{(πΉβ0)})βπ ) = (πΉβ0)) |
143 | 19 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (πΉβ0) β (βͺ π
Γ βͺ π)) |
144 | | 1st2nd2 8010 |
. . . . . . 7
β’ ((πΉβ0) β (βͺ π
Γ βͺ π) β (πΉβ0) = β¨(1st
β(πΉβ0)),
(2nd β(πΉβ0))β©) |
145 | 143, 144 | syl 17 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (πΉβ0) = β¨(1st
β(πΉβ0)),
(2nd β(πΉβ0))β©) |
146 | 142, 145 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (((0[,]1) Γ
{(πΉβ0)})βπ ) = β¨(1st
β(πΉβ0)),
(2nd β(πΉβ0))β©) |
147 | 132, 139,
146 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (π (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)1) = (((0[,]1) Γ {(πΉβ0)})βπ )) |
148 | 27, 35, 37 | phtpyi 24491 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β ((0πΊπ ) = (π΄β0) β§ (1πΊπ ) = (π΄β1))) |
149 | 148 | simpld 495 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (0πΊπ ) = (π΄β0)) |
150 | 149, 117 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (0πΊπ ) = (1st β(πΉβ0))) |
151 | 52, 59, 61 | phtpyi 24491 |
. . . . . . . 8
β’ ((π β§ π β (0[,]1)) β ((0π»π ) = (π΅β0) β§ (1π»π ) = (π΅β1))) |
152 | 151 | simpld 495 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (0π»π ) = (π΅β0)) |
153 | 152, 130 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (0π»π ) = (2nd β(πΉβ0))) |
154 | 150, 153 | opeq12d 4880 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β β¨(0πΊπ ), (0π»π )β© = β¨(1st β(πΉβ0)), (2nd
β(πΉβ0))β©) |
155 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = 0 β§ π¦ = π ) β (π₯πΊπ¦) = (0πΊπ )) |
156 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = 0 β§ π¦ = π ) β (π₯π»π¦) = (0π»π )) |
157 | 155, 156 | opeq12d 4880 |
. . . . . . 7
β’ ((π₯ = 0 β§ π¦ = π ) β β¨(π₯πΊπ¦), (π₯π»π¦)β© = β¨(0πΊπ ), (0π»π )β©) |
158 | | opex 5463 |
. . . . . . 7
β’
β¨(0πΊπ ), (0π»π )β© β V |
159 | 157, 99, 158 | ovmpoa 7559 |
. . . . . 6
β’ ((0
β (0[,]1) β§ π
β (0[,]1)) β (0(π₯
β (0[,]1), π¦ β
(0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)π ) = β¨(0πΊπ ), (0π»π )β©) |
160 | 17, 95, 159 | sylancr 587 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (0(π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)π ) = β¨(0πΊπ ), (0π»π )β©) |
161 | 154, 160,
145 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (0(π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)π ) = (πΉβ0)) |
162 | 148 | simprd 496 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (1πΊπ ) = (π΄β1)) |
163 | 22 | fveq1i 6889 |
. . . . . . . . . 10
β’ (π΄β1) = (((1st
βΎ (βͺ π
Γ βͺ π)) β πΉ)β1) |
164 | | fvco3 6987 |
. . . . . . . . . . 11
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ 1 β (0[,]1)) β
(((1st βΎ (βͺ π
Γ βͺ π)) β πΉ)β1) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ1))) |
165 | 16, 133, 164 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (((1st βΎ
(βͺ π
Γ βͺ π)) β πΉ)β1) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ1))) |
166 | 163, 165 | eqtrid 2784 |
. . . . . . . . 9
β’ (π β (π΄β1) = ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ1))) |
167 | | ffvelcdm 7080 |
. . . . . . . . . . 11
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ 1 β (0[,]1)) β (πΉβ1) β (βͺ π
Γ βͺ π)) |
168 | 16, 133, 167 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (πΉβ1) β (βͺ π
Γ βͺ π)) |
169 | | fvres 6907 |
. . . . . . . . . 10
β’ ((πΉβ1) β (βͺ π
Γ βͺ π) β ((1st βΎ (βͺ π
Γ βͺ π))β(πΉβ1)) = (1st β(πΉβ1))) |
170 | 168, 169 | syl 17 |
. . . . . . . . 9
β’ (π β ((1st βΎ
(βͺ π
Γ βͺ π))β(πΉβ1)) = (1st β(πΉβ1))) |
171 | 166, 170 | eqtrd 2772 |
. . . . . . . 8
β’ (π β (π΄β1) = (1st β(πΉβ1))) |
172 | 171 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π΄β1) = (1st β(πΉβ1))) |
173 | 162, 172 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (1πΊπ ) = (1st β(πΉβ1))) |
174 | 151 | simprd 496 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (1π»π ) = (π΅β1)) |
175 | 47 | fveq1i 6889 |
. . . . . . . . . 10
β’ (π΅β1) = (((2nd
βΎ (βͺ π
Γ βͺ π)) β πΉ)β1) |
176 | | fvco3 6987 |
. . . . . . . . . . 11
β’ ((πΉ:(0[,]1)βΆ(βͺ π
Γ βͺ π) β§ 1 β (0[,]1)) β
(((2nd βΎ (βͺ π
Γ βͺ π)) β πΉ)β1) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ1))) |
177 | 16, 133, 176 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (((2nd βΎ
(βͺ π
Γ βͺ π)) β πΉ)β1) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ1))) |
178 | 175, 177 | eqtrid 2784 |
. . . . . . . . 9
β’ (π β (π΅β1) = ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ1))) |
179 | | fvres 6907 |
. . . . . . . . . 10
β’ ((πΉβ1) β (βͺ π
Γ βͺ π) β ((2nd βΎ (βͺ π
Γ βͺ π))β(πΉβ1)) = (2nd β(πΉβ1))) |
180 | 168, 179 | syl 17 |
. . . . . . . . 9
β’ (π β ((2nd βΎ
(βͺ π
Γ βͺ π))β(πΉβ1)) = (2nd β(πΉβ1))) |
181 | 178, 180 | eqtrd 2772 |
. . . . . . . 8
β’ (π β (π΅β1) = (2nd β(πΉβ1))) |
182 | 181 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0[,]1)) β (π΅β1) = (2nd β(πΉβ1))) |
183 | 174, 182 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (1π»π ) = (2nd β(πΉβ1))) |
184 | 173, 183 | opeq12d 4880 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β β¨(1πΊπ ), (1π»π )β© = β¨(1st β(πΉβ1)), (2nd
β(πΉβ1))β©) |
185 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = 1 β§ π¦ = π ) β (π₯πΊπ¦) = (1πΊπ )) |
186 | | oveq12 7414 |
. . . . . . . 8
β’ ((π₯ = 1 β§ π¦ = π ) β (π₯π»π¦) = (1π»π )) |
187 | 185, 186 | opeq12d 4880 |
. . . . . . 7
β’ ((π₯ = 1 β§ π¦ = π ) β β¨(π₯πΊπ¦), (π₯π»π¦)β© = β¨(1πΊπ ), (1π»π )β©) |
188 | | opex 5463 |
. . . . . . 7
β’
β¨(1πΊπ ), (1π»π )β© β V |
189 | 187, 99, 188 | ovmpoa 7559 |
. . . . . 6
β’ ((1
β (0[,]1) β§ π
β (0[,]1)) β (1(π₯
β (0[,]1), π¦ β
(0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)π ) = β¨(1πΊπ ), (1π»π )β©) |
190 | 133, 95, 189 | sylancr 587 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (1(π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)π ) = β¨(1πΊπ ), (1π»π )β©) |
191 | 168 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β (πΉβ1) β (βͺ π
Γ βͺ π)) |
192 | | 1st2nd2 8010 |
. . . . . 6
β’ ((πΉβ1) β (βͺ π
Γ βͺ π) β (πΉβ1) = β¨(1st
β(πΉβ1)),
(2nd β(πΉβ1))β©) |
193 | 191, 192 | syl 17 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β (πΉβ1) = β¨(1st
β(πΉβ1)),
(2nd β(πΉβ1))β©) |
194 | 184, 190,
193 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (1(π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©)π ) = (πΉβ1)) |
195 | 1, 21, 69, 105, 147, 161, 194 | isphtpy2d 24494 |
. . 3
β’ (π β (π₯ β (0[,]1), π¦ β (0[,]1) β¦ β¨(π₯πΊπ¦), (π₯π»π¦)β©) β (πΉ(PHtpyβ(π
Γt π))((0[,]1) Γ {(πΉβ0)}))) |
196 | 195 | ne0d 4334 |
. 2
β’ (π β (πΉ(PHtpyβ(π
Γt π))((0[,]1) Γ {(πΉβ0)})) β β
) |
197 | | isphtpc 24501 |
. 2
β’ (πΉ(
βphβ(π
Γt π))((0[,]1) Γ {(πΉβ0)}) β (πΉ β (II Cn (π
Γt π)) β§ ((0[,]1) Γ {(πΉβ0)}) β (II Cn (π
Γt π)) β§ (πΉ(PHtpyβ(π
Γt π))((0[,]1) Γ {(πΉβ0)})) β β
)) |
198 | 1, 21, 196, 197 | syl3anbrc 1343 |
1
β’ (π β πΉ( βphβ(π
Γt π))((0[,]1) Γ {(πΉβ0)})) |