Step | Hyp | Ref
| Expression |
1 | | txsconn.3 |
. 2
⊢ (𝜑 → 𝐹 ∈ (II Cn (𝑅 ×t 𝑆))) |
2 | | fconstmpt 5649 |
. . 3
⊢ ((0[,]1)
× {(𝐹‘0)}) =
(𝑥 ∈ (0[,]1) ↦
(𝐹‘0)) |
3 | | iitopon 24042 |
. . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
5 | | txsconn.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Top) |
6 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝑅 =
∪ 𝑅 |
7 | 6 | toptopon 22066 |
. . . . . 6
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘∪ 𝑅)) |
8 | 5, 7 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (TopOn‘∪ 𝑅)) |
9 | | txsconn.2 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Top) |
10 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝑆 =
∪ 𝑆 |
11 | 10 | toptopon 22066 |
. . . . . 6
⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘∪ 𝑆)) |
12 | 9, 11 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ (TopOn‘∪ 𝑆)) |
13 | | txtopon 22742 |
. . . . 5
⊢ ((𝑅 ∈ (TopOn‘∪ 𝑅)
∧ 𝑆 ∈
(TopOn‘∪ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(∪ 𝑅
× ∪ 𝑆))) |
14 | 8, 12, 13 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑅 ×t 𝑆) ∈ (TopOn‘(∪ 𝑅
× ∪ 𝑆))) |
15 | | cnf2 22400 |
. . . . . 6
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ (𝑅 ×t 𝑆) ∈ (TopOn‘(∪ 𝑅
× ∪ 𝑆)) ∧ 𝐹 ∈ (II Cn (𝑅 ×t 𝑆))) → 𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆)) |
16 | 4, 14, 1, 15 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → 𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆)) |
17 | | 0elunit 13201 |
. . . . 5
⊢ 0 ∈
(0[,]1) |
18 | | ffvelrn 6959 |
. . . . 5
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ (∪ 𝑅
× ∪ 𝑆)) |
19 | 16, 17, 18 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝐹‘0) ∈ (∪ 𝑅
× ∪ 𝑆)) |
20 | 4, 14, 19 | cnmptc 22813 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐹‘0)) ∈ (II Cn (𝑅 ×t 𝑆))) |
21 | 2, 20 | eqeltrid 2843 |
. 2
⊢ (𝜑 → ((0[,]1) × {(𝐹‘0)}) ∈ (II Cn (𝑅 ×t 𝑆))) |
22 | | txsconn.5 |
. . . . . . . . . . 11
⊢ 𝐴 = ((1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) |
23 | | tx1cn 22760 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ (TopOn‘∪ 𝑅)
∧ 𝑆 ∈
(TopOn‘∪ 𝑆)) → (1st ↾ (∪ 𝑅
× ∪ 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
24 | 8, 12, 23 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
25 | | cnco 22417 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → ((1st ↾ (∪ 𝑅
× ∪ 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑅)) |
26 | 1, 24, 25 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑅)) |
27 | 22, 26 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (II Cn 𝑅)) |
28 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ ((0[,]1)
× {(𝐴‘0)}) =
(𝑥 ∈ (0[,]1) ↦
(𝐴‘0)) |
29 | | iiuni 24044 |
. . . . . . . . . . . . . . 15
⊢ (0[,]1) =
∪ II |
30 | 29, 6 | cnf 22397 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (II Cn 𝑅) → 𝐴:(0[,]1)⟶∪
𝑅) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴:(0[,]1)⟶∪
𝑅) |
32 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐴:(0[,]1)⟶∪ 𝑅
∧ 0 ∈ (0[,]1)) → (𝐴‘0) ∈ ∪ 𝑅) |
33 | 31, 17, 32 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴‘0) ∈ ∪ 𝑅) |
34 | 4, 8, 33 | cnmptc 22813 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐴‘0)) ∈ (II Cn 𝑅)) |
35 | 28, 34 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (𝜑 → ((0[,]1) × {(𝐴‘0)}) ∈ (II Cn 𝑅)) |
36 | 27, 35 | phtpycn 24146 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)})) ⊆ ((II
×t II) Cn 𝑅)) |
37 | | txsconn.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)}))) |
38 | 36, 37 | sseldd 3922 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝑅)) |
39 | | iitop 24043 |
. . . . . . . . . 10
⊢ II ∈
Top |
40 | 39, 39, 29, 29 | txunii 22744 |
. . . . . . . . 9
⊢ ((0[,]1)
× (0[,]1)) = ∪ (II ×t
II) |
41 | 40, 6 | cnf 22397 |
. . . . . . . 8
⊢ (𝐺 ∈ ((II ×t
II) Cn 𝑅) → 𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝑅) |
42 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝑅 → 𝐺 Fn ((0[,]1) ×
(0[,]1))) |
43 | 38, 41, 42 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ((0[,]1) ×
(0[,]1))) |
44 | | fnov 7405 |
. . . . . . 7
⊢ (𝐺 Fn ((0[,]1) × (0[,]1))
↔ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦))) |
45 | 43, 44 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦))) |
46 | 45, 38 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐺𝑦)) ∈ ((II ×t II) Cn
𝑅)) |
47 | | txsconn.6 |
. . . . . . . . . . 11
⊢ 𝐵 = ((2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) |
48 | | tx2cn 22761 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ (TopOn‘∪ 𝑅)
∧ 𝑆 ∈
(TopOn‘∪ 𝑆)) → (2nd ↾ (∪ 𝑅
× ∪ 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
49 | 8, 12, 48 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
50 | | cnco 22417 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → ((2nd ↾ (∪ 𝑅
× ∪ 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑆)) |
51 | 1, 49, 50 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) ∈ (II Cn 𝑆)) |
52 | 47, 51 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (II Cn 𝑆)) |
53 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ ((0[,]1)
× {(𝐵‘0)}) =
(𝑥 ∈ (0[,]1) ↦
(𝐵‘0)) |
54 | 29, 10 | cnf 22397 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (II Cn 𝑆) → 𝐵:(0[,]1)⟶∪
𝑆) |
55 | 52, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵:(0[,]1)⟶∪
𝑆) |
56 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐵:(0[,]1)⟶∪ 𝑆
∧ 0 ∈ (0[,]1)) → (𝐵‘0) ∈ ∪ 𝑆) |
57 | 55, 17, 56 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵‘0) ∈ ∪ 𝑆) |
58 | 4, 12, 57 | cnmptc 22813 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝐵‘0)) ∈ (II Cn 𝑆)) |
59 | 53, 58 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (𝜑 → ((0[,]1) × {(𝐵‘0)}) ∈ (II Cn 𝑆)) |
60 | 52, 59 | phtpycn 24146 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)})) ⊆ ((II
×t II) Cn 𝑆)) |
61 | | txsconn.8 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)}))) |
62 | 60, 61 | sseldd 3922 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ ((II ×t II) Cn
𝑆)) |
63 | 40, 10 | cnf 22397 |
. . . . . . . 8
⊢ (𝐻 ∈ ((II ×t
II) Cn 𝑆) → 𝐻:((0[,]1) ×
(0[,]1))⟶∪ 𝑆) |
64 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐻:((0[,]1) ×
(0[,]1))⟶∪ 𝑆 → 𝐻 Fn ((0[,]1) ×
(0[,]1))) |
65 | 62, 63, 64 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn ((0[,]1) ×
(0[,]1))) |
66 | | fnov 7405 |
. . . . . . 7
⊢ (𝐻 Fn ((0[,]1) × (0[,]1))
↔ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻𝑦))) |
67 | 65, 66 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻𝑦))) |
68 | 67, 62 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻𝑦)) ∈ ((II ×t II) Cn
𝑆)) |
69 | 4, 4, 46, 68 | cnmpt2t 22824 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉) ∈ ((II ×t II)
Cn (𝑅 ×t
𝑆))) |
70 | 27, 35 | phtpyhtpy 24145 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)})) ⊆ (𝐴(II Htpy 𝑅)((0[,]1) × {(𝐴‘0)}))) |
71 | 70, 37 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (𝐴(II Htpy 𝑅)((0[,]1) × {(𝐴‘0)}))) |
72 | 4, 27, 35, 71 | htpyi 24137 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑠𝐺0) = (𝐴‘𝑠) ∧ (𝑠𝐺1) = (((0[,]1) × {(𝐴‘0)})‘𝑠))) |
73 | 72 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐴‘𝑠)) |
74 | 22 | fveq1i 6775 |
. . . . . . . 8
⊢ (𝐴‘𝑠) = (((1st ↾ (∪ 𝑅
× ∪ 𝑆)) ∘ 𝐹)‘𝑠) |
75 | | fvco3 6867 |
. . . . . . . . 9
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 𝑠 ∈ (0[,]1)) → (((1st
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘𝑠) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘𝑠))) |
76 | 16, 75 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (((1st
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘𝑠) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘𝑠))) |
77 | 74, 76 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐴‘𝑠) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘𝑠))) |
78 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘𝑠) ∈ (∪ 𝑅 × ∪ 𝑆)) |
79 | 16, 78 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘𝑠) ∈ (∪ 𝑅 × ∪ 𝑆)) |
80 | | fvres 6793 |
. . . . . . . 8
⊢ ((𝐹‘𝑠) ∈ (∪ 𝑅 × ∪ 𝑆)
→ ((1st ↾ (∪ 𝑅 × ∪ 𝑆))‘(𝐹‘𝑠)) = (1st ‘(𝐹‘𝑠))) |
81 | 79, 80 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((1st
↾ (∪ 𝑅 × ∪ 𝑆))‘(𝐹‘𝑠)) = (1st ‘(𝐹‘𝑠))) |
82 | 73, 77, 81 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐺0) = (1st ‘(𝐹‘𝑠))) |
83 | 52, 59 | phtpyhtpy 24145 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)})) ⊆ (𝐵(II Htpy 𝑆)((0[,]1) × {(𝐵‘0)}))) |
84 | 83, 61 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ (𝐵(II Htpy 𝑆)((0[,]1) × {(𝐵‘0)}))) |
85 | 4, 52, 59, 84 | htpyi 24137 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑠𝐻0) = (𝐵‘𝑠) ∧ (𝑠𝐻1) = (((0[,]1) × {(𝐵‘0)})‘𝑠))) |
86 | 85 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐵‘𝑠)) |
87 | 47 | fveq1i 6775 |
. . . . . . . 8
⊢ (𝐵‘𝑠) = (((2nd ↾ (∪ 𝑅
× ∪ 𝑆)) ∘ 𝐹)‘𝑠) |
88 | | fvco3 6867 |
. . . . . . . . 9
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 𝑠 ∈ (0[,]1)) → (((2nd
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘𝑠) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘𝑠))) |
89 | 16, 88 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (((2nd
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘𝑠) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘𝑠))) |
90 | 87, 89 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐵‘𝑠) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘𝑠))) |
91 | | fvres 6793 |
. . . . . . . 8
⊢ ((𝐹‘𝑠) ∈ (∪ 𝑅 × ∪ 𝑆)
→ ((2nd ↾ (∪ 𝑅 × ∪ 𝑆))‘(𝐹‘𝑠)) = (2nd ‘(𝐹‘𝑠))) |
92 | 79, 91 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((2nd
↾ (∪ 𝑅 × ∪ 𝑆))‘(𝐹‘𝑠)) = (2nd ‘(𝐹‘𝑠))) |
93 | 86, 90, 92 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (2nd ‘(𝐹‘𝑠))) |
94 | 82, 93 | opeq12d 4812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈(𝑠𝐺0), (𝑠𝐻0)〉 = 〈(1st
‘(𝐹‘𝑠)), (2nd
‘(𝐹‘𝑠))〉) |
95 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
96 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (𝑥𝐺𝑦) = (𝑠𝐺0)) |
97 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (𝑥𝐻𝑦) = (𝑠𝐻0)) |
98 | 96, 97 | opeq12d 4812 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉 = 〈(𝑠𝐺0), (𝑠𝐻0)〉) |
99 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦
〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉) |
100 | | opex 5379 |
. . . . . . 7
⊢
〈(𝑠𝐺0), (𝑠𝐻0)〉 ∈ V |
101 | 98, 99, 100 | ovmpoa 7428 |
. . . . . 6
⊢ ((𝑠 ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦
〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)0) = 〈(𝑠𝐺0), (𝑠𝐻0)〉) |
102 | 95, 17, 101 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)0) = 〈(𝑠𝐺0), (𝑠𝐻0)〉) |
103 | | 1st2nd2 7870 |
. . . . . 6
⊢ ((𝐹‘𝑠) ∈ (∪ 𝑅 × ∪ 𝑆)
→ (𝐹‘𝑠) = 〈(1st
‘(𝐹‘𝑠)), (2nd
‘(𝐹‘𝑠))〉) |
104 | 79, 103 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘𝑠) = 〈(1st ‘(𝐹‘𝑠)), (2nd ‘(𝐹‘𝑠))〉) |
105 | 94, 102, 104 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)0) = (𝐹‘𝑠)) |
106 | 72 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐺1) = (((0[,]1) × {(𝐴‘0)})‘𝑠)) |
107 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐴‘0) ∈
V |
108 | 107 | fvconst2 7079 |
. . . . . . . 8
⊢ (𝑠 ∈ (0[,]1) → (((0[,]1)
× {(𝐴‘0)})‘𝑠) = (𝐴‘0)) |
109 | 108 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) ×
{(𝐴‘0)})‘𝑠) = (𝐴‘0)) |
110 | 22 | fveq1i 6775 |
. . . . . . . . 9
⊢ (𝐴‘0) = (((1st
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) |
111 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 0 ∈ (0[,]1)) →
(((1st ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘0))) |
112 | 16, 17, 111 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (((1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘0))) |
113 | | fvres 6793 |
. . . . . . . . . . 11
⊢ ((𝐹‘0) ∈ (∪ 𝑅
× ∪ 𝑆) → ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘0)) = (1st ‘(𝐹‘0))) |
114 | 19, 113 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st ↾
(∪ 𝑅 × ∪ 𝑆))‘(𝐹‘0)) = (1st ‘(𝐹‘0))) |
115 | 112, 114 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (((1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) = (1st ‘(𝐹‘0))) |
116 | 110, 115 | eqtrid 2790 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘0) = (1st ‘(𝐹‘0))) |
117 | 116 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐴‘0) = (1st ‘(𝐹‘0))) |
118 | 106, 109,
117 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐺1) = (1st ‘(𝐹‘0))) |
119 | 85 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (((0[,]1) × {(𝐵‘0)})‘𝑠)) |
120 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐵‘0) ∈
V |
121 | 120 | fvconst2 7079 |
. . . . . . . 8
⊢ (𝑠 ∈ (0[,]1) → (((0[,]1)
× {(𝐵‘0)})‘𝑠) = (𝐵‘0)) |
122 | 121 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) ×
{(𝐵‘0)})‘𝑠) = (𝐵‘0)) |
123 | 47 | fveq1i 6775 |
. . . . . . . . 9
⊢ (𝐵‘0) = (((2nd
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) |
124 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 0 ∈ (0[,]1)) →
(((2nd ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘0))) |
125 | 16, 17, 124 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (((2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘0))) |
126 | | fvres 6793 |
. . . . . . . . . . 11
⊢ ((𝐹‘0) ∈ (∪ 𝑅
× ∪ 𝑆) → ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘0)) = (2nd ‘(𝐹‘0))) |
127 | 19, 126 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((2nd ↾
(∪ 𝑅 × ∪ 𝑆))‘(𝐹‘0)) = (2nd ‘(𝐹‘0))) |
128 | 125, 127 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (((2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘0) = (2nd ‘(𝐹‘0))) |
129 | 123, 128 | eqtrid 2790 |
. . . . . . . 8
⊢ (𝜑 → (𝐵‘0) = (2nd ‘(𝐹‘0))) |
130 | 129 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐵‘0) = (2nd ‘(𝐹‘0))) |
131 | 119, 122,
130 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (2nd ‘(𝐹‘0))) |
132 | 118, 131 | opeq12d 4812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈(𝑠𝐺1), (𝑠𝐻1)〉 = 〈(1st
‘(𝐹‘0)),
(2nd ‘(𝐹‘0))〉) |
133 | | 1elunit 13202 |
. . . . . 6
⊢ 1 ∈
(0[,]1) |
134 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (𝑥𝐺𝑦) = (𝑠𝐺1)) |
135 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (𝑥𝐻𝑦) = (𝑠𝐻1)) |
136 | 134, 135 | opeq12d 4812 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉 = 〈(𝑠𝐺1), (𝑠𝐻1)〉) |
137 | | opex 5379 |
. . . . . . 7
⊢
〈(𝑠𝐺1), (𝑠𝐻1)〉 ∈ V |
138 | 136, 99, 137 | ovmpoa 7428 |
. . . . . 6
⊢ ((𝑠 ∈ (0[,]1) ∧ 1 ∈
(0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦
〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)1) = 〈(𝑠𝐺1), (𝑠𝐻1)〉) |
139 | 95, 133, 138 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)1) = 〈(𝑠𝐺1), (𝑠𝐻1)〉) |
140 | | fvex 6787 |
. . . . . . . 8
⊢ (𝐹‘0) ∈
V |
141 | 140 | fvconst2 7079 |
. . . . . . 7
⊢ (𝑠 ∈ (0[,]1) → (((0[,]1)
× {(𝐹‘0)})‘𝑠) = (𝐹‘0)) |
142 | 141 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) ×
{(𝐹‘0)})‘𝑠) = (𝐹‘0)) |
143 | 19 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘0) ∈ (∪ 𝑅
× ∪ 𝑆)) |
144 | | 1st2nd2 7870 |
. . . . . . 7
⊢ ((𝐹‘0) ∈ (∪ 𝑅
× ∪ 𝑆) → (𝐹‘0) = 〈(1st
‘(𝐹‘0)),
(2nd ‘(𝐹‘0))〉) |
145 | 143, 144 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘0) = 〈(1st
‘(𝐹‘0)),
(2nd ‘(𝐹‘0))〉) |
146 | 142, 145 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) ×
{(𝐹‘0)})‘𝑠) = 〈(1st
‘(𝐹‘0)),
(2nd ‘(𝐹‘0))〉) |
147 | 132, 139,
146 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)1) = (((0[,]1) × {(𝐹‘0)})‘𝑠)) |
148 | 27, 35, 37 | phtpyi 24147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐺𝑠) = (𝐴‘0) ∧ (1𝐺𝑠) = (𝐴‘1))) |
149 | 148 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐴‘0)) |
150 | 149, 117 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (1st ‘(𝐹‘0))) |
151 | 52, 59, 61 | phtpyi 24147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐵‘0) ∧ (1𝐻𝑠) = (𝐵‘1))) |
152 | 151 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐵‘0)) |
153 | 152, 130 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (2nd ‘(𝐹‘0))) |
154 | 150, 153 | opeq12d 4812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈(0𝐺𝑠), (0𝐻𝑠)〉 = 〈(1st ‘(𝐹‘0)), (2nd
‘(𝐹‘0))〉) |
155 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐺𝑦) = (0𝐺𝑠)) |
156 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑥𝐻𝑦) = (0𝐻𝑠)) |
157 | 155, 156 | opeq12d 4812 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉 = 〈(0𝐺𝑠), (0𝐻𝑠)〉) |
158 | | opex 5379 |
. . . . . . 7
⊢
〈(0𝐺𝑠), (0𝐻𝑠)〉 ∈ V |
159 | 157, 99, 158 | ovmpoa 7428 |
. . . . . 6
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (0(𝑥
∈ (0[,]1), 𝑦 ∈
(0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)𝑠) = 〈(0𝐺𝑠), (0𝐻𝑠)〉) |
160 | 17, 95, 159 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)𝑠) = 〈(0𝐺𝑠), (0𝐻𝑠)〉) |
161 | 154, 160,
145 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)𝑠) = (𝐹‘0)) |
162 | 148 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐴‘1)) |
163 | 22 | fveq1i 6775 |
. . . . . . . . . 10
⊢ (𝐴‘1) = (((1st
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘1) |
164 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 1 ∈ (0[,]1)) →
(((1st ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘1) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1))) |
165 | 16, 133, 164 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (((1st ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘1) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1))) |
166 | 163, 165 | eqtrid 2790 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘1) = ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1))) |
167 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ (∪ 𝑅
× ∪ 𝑆)) |
168 | 16, 133, 167 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘1) ∈ (∪ 𝑅
× ∪ 𝑆)) |
169 | | fvres 6793 |
. . . . . . . . . 10
⊢ ((𝐹‘1) ∈ (∪ 𝑅
× ∪ 𝑆) → ((1st ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1)) = (1st ‘(𝐹‘1))) |
170 | 168, 169 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((1st ↾
(∪ 𝑅 × ∪ 𝑆))‘(𝐹‘1)) = (1st ‘(𝐹‘1))) |
171 | 166, 170 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘1) = (1st ‘(𝐹‘1))) |
172 | 171 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐴‘1) = (1st ‘(𝐹‘1))) |
173 | 162, 172 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (1st ‘(𝐹‘1))) |
174 | 151 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐵‘1)) |
175 | 47 | fveq1i 6775 |
. . . . . . . . . 10
⊢ (𝐵‘1) = (((2nd
↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘1) |
176 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶(∪ 𝑅
× ∪ 𝑆) ∧ 1 ∈ (0[,]1)) →
(((2nd ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘1) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1))) |
177 | 16, 133, 176 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (((2nd ↾
(∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹)‘1) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1))) |
178 | 175, 177 | eqtrid 2790 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵‘1) = ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1))) |
179 | | fvres 6793 |
. . . . . . . . . 10
⊢ ((𝐹‘1) ∈ (∪ 𝑅
× ∪ 𝑆) → ((2nd ↾ (∪ 𝑅
× ∪ 𝑆))‘(𝐹‘1)) = (2nd ‘(𝐹‘1))) |
180 | 168, 179 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((2nd ↾
(∪ 𝑅 × ∪ 𝑆))‘(𝐹‘1)) = (2nd ‘(𝐹‘1))) |
181 | 178, 180 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (𝐵‘1) = (2nd ‘(𝐹‘1))) |
182 | 181 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐵‘1) = (2nd ‘(𝐹‘1))) |
183 | 174, 182 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (2nd ‘(𝐹‘1))) |
184 | 173, 183 | opeq12d 4812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈(1𝐺𝑠), (1𝐻𝑠)〉 = 〈(1st ‘(𝐹‘1)), (2nd
‘(𝐹‘1))〉) |
185 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐺𝑦) = (1𝐺𝑠)) |
186 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥𝐻𝑦) = (1𝐻𝑠)) |
187 | 185, 186 | opeq12d 4812 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉 = 〈(1𝐺𝑠), (1𝐻𝑠)〉) |
188 | | opex 5379 |
. . . . . . 7
⊢
〈(1𝐺𝑠), (1𝐻𝑠)〉 ∈ V |
189 | 187, 99, 188 | ovmpoa 7428 |
. . . . . 6
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (1(𝑥
∈ (0[,]1), 𝑦 ∈
(0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)𝑠) = 〈(1𝐺𝑠), (1𝐻𝑠)〉) |
190 | 133, 95, 189 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)𝑠) = 〈(1𝐺𝑠), (1𝐻𝑠)〉) |
191 | 168 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘1) ∈ (∪ 𝑅
× ∪ 𝑆)) |
192 | | 1st2nd2 7870 |
. . . . . 6
⊢ ((𝐹‘1) ∈ (∪ 𝑅
× ∪ 𝑆) → (𝐹‘1) = 〈(1st
‘(𝐹‘1)),
(2nd ‘(𝐹‘1))〉) |
193 | 191, 192 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘1) = 〈(1st
‘(𝐹‘1)),
(2nd ‘(𝐹‘1))〉) |
194 | 184, 190,
193 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1(𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉)𝑠) = (𝐹‘1)) |
195 | 1, 21, 69, 105, 147, 161, 194 | isphtpy2d 24150 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 〈(𝑥𝐺𝑦), (𝑥𝐻𝑦)〉) ∈ (𝐹(PHtpy‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)}))) |
196 | 195 | ne0d 4269 |
. 2
⊢ (𝜑 → (𝐹(PHtpy‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) ≠ ∅) |
197 | | isphtpc 24157 |
. 2
⊢ (𝐹(
≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)}) ↔ (𝐹 ∈ (II Cn (𝑅 ×t 𝑆)) ∧ ((0[,]1) × {(𝐹‘0)}) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (𝐹(PHtpy‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) ≠ ∅)) |
198 | 1, 21, 196, 197 | syl3anbrc 1342 |
1
⊢ (𝜑 → 𝐹( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) |