| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossico2d | Structured version Visualization version GIF version | ||
| Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| icossico2d.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| icossico2d.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| icossico2d.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| icossico2d | ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icossico2d.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 2 | icossico2d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 3 | icossico2d.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 4 | 2 | xrleidd 13051 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐶) |
| 5 | icossico 13316 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐶)) → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 (class class class)co 7346 ℝ*cxr 11145 ≤ cle 11147 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 |
| This theorem is referenced by: liminflelimsuplem 45872 rehalfge1 47434 |
| Copyright terms: Public domain | W3C validator |