| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rehalfge1 | Structured version Visualization version GIF version | ||
| Description: Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| rehalfge1 | ⊢ (𝑋 ∈ (2[,)+∞) → 1 ≤ (𝑋 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12237 | . . . 4 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mullidi 11155 | . . 3 ⊢ (1 · 2) = 2 |
| 3 | 2re 12236 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 4 | 3 | rexri 11208 | . . . . 5 ⊢ 2 ∈ ℝ* |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (2[,)+∞) → 2 ∈ ℝ*) |
| 6 | pnfxr 11204 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (2[,)+∞) → +∞ ∈ ℝ*) |
| 8 | id 22 | . . . 4 ⊢ (𝑋 ∈ (2[,)+∞) → 𝑋 ∈ (2[,)+∞)) | |
| 9 | 5, 7, 8 | icogelbd 13334 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 2 ≤ 𝑋) |
| 10 | 2, 9 | eqbrtrid 5137 | . 2 ⊢ (𝑋 ∈ (2[,)+∞) → (1 · 2) ≤ 𝑋) |
| 11 | 1red 11151 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 1 ∈ ℝ) | |
| 12 | 0le2 12264 | . . . . . 6 ⊢ 0 ≤ 2 | |
| 13 | 0xr 11197 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (0 ≤ 2 → 0 ∈ ℝ*) |
| 15 | 6 | a1i 11 | . . . . . . 7 ⊢ (0 ≤ 2 → +∞ ∈ ℝ*) |
| 16 | id 22 | . . . . . . 7 ⊢ (0 ≤ 2 → 0 ≤ 2) | |
| 17 | 14, 15, 16 | icossico2d 13358 | . . . . . 6 ⊢ (0 ≤ 2 → (2[,)+∞) ⊆ (0[,)+∞)) |
| 18 | 12, 17 | ax-mp 5 | . . . . 5 ⊢ (2[,)+∞) ⊆ (0[,)+∞) |
| 19 | rge0ssre 13393 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 20 | 18, 19 | sstri 3953 | . . . 4 ⊢ (2[,)+∞) ⊆ ℝ |
| 21 | 20 | sseli 3939 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 𝑋 ∈ ℝ) |
| 22 | 2rp 12932 | . . . 4 ⊢ 2 ∈ ℝ+ | |
| 23 | 22 | a1i 11 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 2 ∈ ℝ+) |
| 24 | 11, 21, 23 | lemuldivd 13020 | . 2 ⊢ (𝑋 ∈ (2[,)+∞) → ((1 · 2) ≤ 𝑋 ↔ 1 ≤ (𝑋 / 2))) |
| 25 | 10, 24 | mpbid 232 | 1 ⊢ (𝑋 ∈ (2[,)+∞) → 1 ≤ (𝑋 / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 · cmul 11049 +∞cpnf 11181 ℝ*cxr 11183 ≤ cle 11185 / cdiv 11811 2c2 12217 ℝ+crp 12927 [,)cico 13284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-2 12225 df-rp 12928 df-ico 13288 |
| This theorem is referenced by: ceilhalfnn 47330 |
| Copyright terms: Public domain | W3C validator |