| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rehalfge1 | Structured version Visualization version GIF version | ||
| Description: Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| rehalfge1 | ⊢ (𝑋 ∈ (2[,)+∞) → 1 ≤ (𝑋 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12313 | . . . 4 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mullidi 11238 | . . 3 ⊢ (1 · 2) = 2 |
| 3 | 2re 12312 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 4 | 3 | rexri 11291 | . . . . 5 ⊢ 2 ∈ ℝ* |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (2[,)+∞) → 2 ∈ ℝ*) |
| 6 | pnfxr 11287 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (2[,)+∞) → +∞ ∈ ℝ*) |
| 8 | id 22 | . . . 4 ⊢ (𝑋 ∈ (2[,)+∞) → 𝑋 ∈ (2[,)+∞)) | |
| 9 | 5, 7, 8 | icogelbd 13412 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 2 ≤ 𝑋) |
| 10 | 2, 9 | eqbrtrid 5154 | . 2 ⊢ (𝑋 ∈ (2[,)+∞) → (1 · 2) ≤ 𝑋) |
| 11 | 1red 11234 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 1 ∈ ℝ) | |
| 12 | 0le2 12340 | . . . . . 6 ⊢ 0 ≤ 2 | |
| 13 | 0xr 11280 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (0 ≤ 2 → 0 ∈ ℝ*) |
| 15 | 6 | a1i 11 | . . . . . . 7 ⊢ (0 ≤ 2 → +∞ ∈ ℝ*) |
| 16 | id 22 | . . . . . . 7 ⊢ (0 ≤ 2 → 0 ≤ 2) | |
| 17 | 14, 15, 16 | icossico2d 13436 | . . . . . 6 ⊢ (0 ≤ 2 → (2[,)+∞) ⊆ (0[,)+∞)) |
| 18 | 12, 17 | ax-mp 5 | . . . . 5 ⊢ (2[,)+∞) ⊆ (0[,)+∞) |
| 19 | rge0ssre 13471 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 20 | 18, 19 | sstri 3968 | . . . 4 ⊢ (2[,)+∞) ⊆ ℝ |
| 21 | 20 | sseli 3954 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 𝑋 ∈ ℝ) |
| 22 | 2rp 13011 | . . . 4 ⊢ 2 ∈ ℝ+ | |
| 23 | 22 | a1i 11 | . . 3 ⊢ (𝑋 ∈ (2[,)+∞) → 2 ∈ ℝ+) |
| 24 | 11, 21, 23 | lemuldivd 13098 | . 2 ⊢ (𝑋 ∈ (2[,)+∞) → ((1 · 2) ≤ 𝑋 ↔ 1 ≤ (𝑋 / 2))) |
| 25 | 10, 24 | mpbid 232 | 1 ⊢ (𝑋 ∈ (2[,)+∞) → 1 ≤ (𝑋 / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 · cmul 11132 +∞cpnf 11264 ℝ*cxr 11266 ≤ cle 11268 / cdiv 11892 2c2 12293 ℝ+crp 13006 [,)cico 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-2 12301 df-rp 13007 df-ico 13366 |
| This theorem is referenced by: ceilhalfnn 47313 |
| Copyright terms: Public domain | W3C validator |