Step | Hyp | Ref
| Expression |
1 | | dgrco.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
2 | | plyf 25359 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
4 | 3 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐺‘𝑥) ∈ ℂ) |
5 | | dgrco.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
6 | | plyf 25359 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
7 | 5, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
8 | 7 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺‘𝑥) ∈ ℂ) → (𝐹‘(𝐺‘𝑥)) ∈ ℂ) |
9 | 4, 8 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹‘(𝐺‘𝑥)) ∈ ℂ) |
10 | | dgrco.5 |
. . . . . . . . . . . . 13
⊢ 𝐴 = (coeff‘𝐹) |
11 | 10 | coef3 25393 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
12 | 5, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
13 | | dgrco.1 |
. . . . . . . . . . . 12
⊢ 𝑀 = (deg‘𝐹) |
14 | | dgrcl 25394 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
15 | 5, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
16 | 13, 15 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
17 | 12, 16 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝑀) ∈ ℂ) |
18 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴‘𝑀) ∈ ℂ) |
19 | 16 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑀 ∈
ℕ0) |
20 | 4, 19 | expcld 13864 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐺‘𝑥)↑𝑀) ∈ ℂ) |
21 | 18, 20 | mulcld 10995 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)) ∈ ℂ) |
22 | 9, 21 | npcand 11336 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) + ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) = (𝐹‘(𝐺‘𝑥))) |
23 | 22 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) + ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘𝑥)))) |
24 | | cnex 10952 |
. . . . . . . 8
⊢ ℂ
∈ V |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℂ ∈
V) |
26 | 9, 21 | subcld 11332 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈ ℂ) |
27 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
28 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
29 | 25, 26, 21, 27, 28 | offval2 7553 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) + ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
30 | 3 | feqmptd 6837 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘𝑥))) |
31 | 7 | feqmptd 6837 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
32 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑥))) |
33 | 4, 30, 31, 32 | fmptco 7001 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘𝑥)))) |
34 | 23, 29, 33 | 3eqtr4rd 2789 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ 𝐺) = ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
35 | 34 | fveq2d 6778 |
. . . 4
⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))))) |
36 | 35 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘ 𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))))) |
37 | 25, 9, 21, 33, 28 | offval2 7553 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ∘ 𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
38 | | plyssc 25361 |
. . . . . . . . 9
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
39 | 38, 5 | sselid 3919 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) |
40 | 38, 1 | sselid 3919 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈
(Poly‘ℂ)) |
41 | | addcl 10953 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ) |
42 | 41 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ) |
43 | | mulcl 10955 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ) |
44 | 43 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
45 | 39, 40, 42, 44 | plyco 25402 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈
(Poly‘ℂ)) |
46 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) |
47 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦↑𝑀) = ((𝐺‘𝑥)↑𝑀)) |
48 | 47 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑥) → ((𝐴‘𝑀) · (𝑦↑𝑀)) = ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) |
49 | 4, 30, 46, 48 | fmptco 7001 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
50 | | ssidd 3944 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ⊆
ℂ) |
51 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) |
52 | 51 | ply1term 25365 |
. . . . . . . . . 10
⊢ ((ℂ
⊆ ℂ ∧ (𝐴‘𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈
(Poly‘ℂ)) |
53 | 50, 17, 16, 52 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈
(Poly‘ℂ)) |
54 | 53, 40, 42, 44 | plyco 25402 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∘ 𝐺) ∈
(Poly‘ℂ)) |
55 | 49, 54 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈
(Poly‘ℂ)) |
56 | | plysubcl 25383 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝐺) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈ (Poly‘ℂ)) →
((𝐹 ∘ 𝐺) ∘f −
(𝑥 ∈ ℂ ↦
((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
57 | 45, 55, 56 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ∘ 𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
58 | 37, 57 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
59 | 58 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
60 | 55 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈
(Poly‘ℂ)) |
61 | | dgrco.7 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 = (𝐷 + 1)) |
62 | | dgrco.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
63 | | nn0p1nn 12272 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ0
→ (𝐷 + 1) ∈
ℕ) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷 + 1) ∈ ℕ) |
65 | 61, 64 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
66 | 65 | nngt0d 12022 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑀) |
67 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) =
(deg‘0𝑝)) |
68 | | dgr0 25423 |
. . . . . . . . . . 11
⊢
(deg‘0𝑝) = 0 |
69 | 67, 68 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = 0) |
70 | 69 | breq1d 5084 |
. . . . . . . . 9
⊢ ((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
((deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 ↔ 0 < 𝑀)) |
71 | 66, 70 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀)) |
72 | | idd 24 |
. . . . . . . 8
⊢ (𝜑 → ((deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 → (deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀)) |
73 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(deg‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) |
74 | 13, 73 | dgrsub 25433 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ)) →
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀)) |
75 | 39, 53, 74 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀)) |
76 | 65 | nnne0d 12023 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ≠ 0) |
77 | 13, 10 | dgreq0 25426 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑀) = 0)) |
78 | 5, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑀) = 0)) |
79 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
80 | 79, 68 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
0) |
81 | 13, 80 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 = 0𝑝 →
𝑀 = 0) |
82 | 78, 81 | syl6bir 253 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐴‘𝑀) = 0 → 𝑀 = 0)) |
83 | 82 | necon3d 2964 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ≠ 0 → (𝐴‘𝑀) ≠ 0)) |
84 | 76, 83 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴‘𝑀) ≠ 0) |
85 | 51 | dgr1term 25421 |
. . . . . . . . . . . . 13
⊢ (((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0 ∧ 𝑀 ∈ ℕ0) →
(deg‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 𝑀) |
86 | 17, 84, 16, 85 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 𝑀) |
87 | 86 | ifeq1d 4478 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀) = if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀, 𝑀)) |
88 | | ifid 4499 |
. . . . . . . . . . 11
⊢ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀, 𝑀) = 𝑀 |
89 | 87, 88 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀) = 𝑀) |
90 | 75, 89 | breqtrd 5100 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝑀) |
91 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(coeff‘(𝑦
∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) |
92 | 10, 91 | coesub 25418 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ)) →
(coeff‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (𝐴 ∘f −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))) |
93 | 39, 53, 92 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (coeff‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) = (𝐴 ∘f −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))) |
94 | 93 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝜑 → ((coeff‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = ((𝐴 ∘f −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀)) |
95 | 12 | ffnd 6601 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 Fn ℕ0) |
96 | 91 | coef3 25393 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ) →
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))):ℕ0⟶ℂ) |
97 | 53, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))):ℕ0⟶ℂ) |
98 | 97 | ffnd 6601 |
. . . . . . . . . . . 12
⊢ (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) Fn
ℕ0) |
99 | | nn0ex 12239 |
. . . . . . . . . . . . 13
⊢
ℕ0 ∈ V |
100 | 99 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℕ0 ∈
V) |
101 | | inidm 4152 |
. . . . . . . . . . . 12
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
102 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ0) → (𝐴‘𝑀) = (𝐴‘𝑀)) |
103 | 51 | coe1term 25420 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴‘𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ ((coeff‘(𝑦
∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴‘𝑀), 0)) |
104 | 17, 16, 16, 103 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴‘𝑀), 0)) |
105 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ 𝑀 = 𝑀 |
106 | 105 | iftruei 4466 |
. . . . . . . . . . . . . 14
⊢ if(𝑀 = 𝑀, (𝐴‘𝑀), 0) = (𝐴‘𝑀) |
107 | 104, 106 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = (𝐴‘𝑀)) |
108 | 107 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ0) →
((coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = (𝐴‘𝑀)) |
109 | 95, 98, 100, 100, 101, 102, 108 | ofval 7544 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ0) → ((𝐴 ∘f −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = ((𝐴‘𝑀) − (𝐴‘𝑀))) |
110 | 16, 109 | mpdan 684 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ∘f −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = ((𝐴‘𝑀) − (𝐴‘𝑀))) |
111 | 17 | subidd 11320 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴‘𝑀) − (𝐴‘𝑀)) = 0) |
112 | 94, 110, 111 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (𝜑 → ((coeff‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = 0) |
113 | | plysubcl 25383 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ)) →
(𝐹 ∘f
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈
(Poly‘ℂ)) |
114 | 39, 53, 113 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈
(Poly‘ℂ)) |
115 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) |
116 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(coeff‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (coeff‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) |
117 | 115, 116 | dgrlt 25427 |
. . . . . . . . . 10
⊢ (((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈ (Poly‘ℂ) ∧ 𝑀 ∈ ℕ0)
→ (((𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) ↔ ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = 0))) |
118 | 114, 16, 117 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) ↔ ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = 0))) |
119 | 90, 112, 118 | mpbir2and 710 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀)) |
120 | 71, 72, 119 | mpjaod 857 |
. . . . . . 7
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) |
121 | 120 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) |
122 | | dgrcl 25394 |
. . . . . . . . . 10
⊢ ((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈ (Poly‘ℂ) →
(deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈
ℕ0) |
123 | 114, 122 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈
ℕ0) |
124 | 123 | nn0red 12294 |
. . . . . . . 8
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℝ) |
125 | 124 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℝ) |
126 | 16 | nn0red 12294 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) |
127 | 126 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
128 | | nnre 11980 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
129 | 128 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
130 | | nngt0 12004 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
131 | 130 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
132 | | ltmul1 11825 |
. . . . . . 7
⊢
(((deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 ↔ ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁) < (𝑀 · 𝑁))) |
133 | 125, 127,
129, 131, 132 | syl112anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 ↔ ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁) < (𝑀 · 𝑁))) |
134 | 121, 133 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁) < (𝑀 · 𝑁)) |
135 | 7 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐹‘𝑦) ∈ ℂ) |
136 | 17 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐴‘𝑀) ∈ ℂ) |
137 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℂ → 𝑦 ∈
ℂ) |
138 | | expcl 13800 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝑦↑𝑀) ∈
ℂ) |
139 | 137, 16, 138 | syl2anr 597 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝑀) ∈ ℂ) |
140 | 136, 139 | mulcld 10995 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝐴‘𝑀) · (𝑦↑𝑀)) ∈ ℂ) |
141 | 25, 135, 140, 31, 46 | offval2 7553 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝐹‘𝑦) − ((𝐴‘𝑀) · (𝑦↑𝑀))))) |
142 | 32, 48 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑥) → ((𝐹‘𝑦) − ((𝐴‘𝑀) · (𝑦↑𝑀))) = ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
143 | 4, 30, 141, 142 | fmptco 7001 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
144 | 143 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (deg‘((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))))) |
145 | 120, 61 | breqtrd 5100 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) < (𝐷 + 1)) |
146 | | nn0leltp1 12379 |
. . . . . . . . . 10
⊢
(((deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)
→ ((deg‘(𝐹
∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < (𝐷 + 1))) |
147 | 123, 62, 146 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < (𝐷 + 1))) |
148 | 145, 147 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷) |
149 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (deg‘𝑓) = (deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))) |
150 | 149 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → ((deg‘𝑓) ≤ 𝐷 ↔ (deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷)) |
151 | | coeq1 5766 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (𝑓 ∘ 𝐺) = ((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) |
152 | 151 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (deg‘(𝑓 ∘ 𝐺)) = (deg‘((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺))) |
153 | 149 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → ((deg‘𝑓) · 𝑁) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
154 | 152, 153 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → ((deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁))) |
155 | 150, 154 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 → (deg‘((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)))) |
156 | | dgrco.8 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
157 | 155, 156,
114 | rspcdva 3562 |
. . . . . . . 8
⊢ (𝜑 → ((deg‘(𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 → (deg‘((𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁))) |
158 | 148, 157 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (deg‘((𝐹 ∘f −
(𝑦 ∈ ℂ ↦
((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
159 | 144, 158 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
160 | 159 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = ((deg‘(𝐹 ∘f − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
161 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ (ℂ
× {(𝐴‘𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴‘𝑀)) |
162 | 161 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ × {(𝐴‘𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴‘𝑀))) |
163 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) |
164 | 25, 18, 20, 162, 163 | offval2 7553 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ × {(𝐴‘𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
165 | 164 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝜑 → (deg‘((ℂ
× {(𝐴‘𝑀)}) ∘f ·
(𝑥 ∈ ℂ ↦
((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
166 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) = (𝑦 ∈ ℂ ↦ (𝑦↑𝑀))) |
167 | 4, 30, 166, 47 | fmptco 7001 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) |
168 | | 1cnd 10970 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
169 | | plypow 25366 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∈
(Poly‘ℂ)) |
170 | 50, 168, 16, 169 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∈
(Poly‘ℂ)) |
171 | 170, 40, 42, 44 | plyco 25402 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∘ 𝐺) ∈
(Poly‘ℂ)) |
172 | 167, 171 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)) ∈
(Poly‘ℂ)) |
173 | | dgrmulc 25432 |
. . . . . . . . 9
⊢ (((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0 ∧ (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)) ∈ (Poly‘ℂ)) →
(deg‘((ℂ × {(𝐴‘𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
174 | 17, 84, 172, 173 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (deg‘((ℂ
× {(𝐴‘𝑀)}) ∘f ·
(𝑥 ∈ ℂ ↦
((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
175 | 165, 174 | eqtr3d 2780 |
. . . . . . 7
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
176 | 175 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
177 | | dgrco.2 |
. . . . . . 7
⊢ 𝑁 = (deg‘𝐺) |
178 | 65 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ) |
179 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
180 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆)) |
181 | 177, 178,
179, 180 | dgrcolem1 25434 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) |
182 | 176, 181 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑀 · 𝑁)) |
183 | 134, 160,
182 | 3brtr4d 5106 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
184 | | eqid 2738 |
. . . . 5
⊢
(deg‘(𝑥 ∈
ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
185 | | eqid 2738 |
. . . . 5
⊢
(deg‘(𝑥 ∈
ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
186 | 184, 185 | dgradd2 25429 |
. . . 4
⊢ (((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈ (Poly‘ℂ) ∧
(𝑥 ∈ ℂ ↦
((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈ (Poly‘ℂ) ∧
(deg‘(𝑥 ∈
ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
187 | 59, 60, 183, 186 | syl3anc 1370 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
188 | 36, 187, 182 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |
189 | | 0cn 10967 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
190 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((𝐺:ℂ⟶ℂ ∧ 0
∈ ℂ) → (𝐺‘0) ∈ ℂ) |
191 | 3, 189, 190 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘0) ∈ ℂ) |
192 | 7, 191 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝐺‘0)) ∈ ℂ) |
193 | | 0dgr 25406 |
. . . . . 6
⊢ ((𝐹‘(𝐺‘0)) ∈ ℂ →
(deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0) |
194 | 192, 193 | syl 17 |
. . . . 5
⊢ (𝜑 → (deg‘(ℂ
× {(𝐹‘(𝐺‘0))})) =
0) |
195 | 16 | nn0cnd 12295 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℂ) |
196 | 195 | mul01d 11174 |
. . . . 5
⊢ (𝜑 → (𝑀 · 0) = 0) |
197 | 194, 196 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → (deg‘(ℂ
× {(𝐹‘(𝐺‘0))})) = (𝑀 · 0)) |
198 | 197 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘(ℂ ×
{(𝐹‘(𝐺‘0))})) = (𝑀 · 0)) |
199 | 191 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑥 ∈ ℂ) → (𝐺‘0) ∈ ℂ) |
200 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) |
201 | 177, 200 | eqtr3id 2792 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘𝐺) = 0) |
202 | | 0dgrb 25407 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (Poly‘𝑆) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)}))) |
203 | 1, 202 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)}))) |
204 | 203 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = 0) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)}))) |
205 | 201, 204 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐺 = (ℂ × {(𝐺‘0)})) |
206 | | fconstmpt 5649 |
. . . . . . 7
⊢ (ℂ
× {(𝐺‘0)}) =
(𝑥 ∈ ℂ ↦
(𝐺‘0)) |
207 | 205, 206 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘0))) |
208 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
209 | | fveq2 6774 |
. . . . . 6
⊢ (𝑦 = (𝐺‘0) → (𝐹‘𝑦) = (𝐹‘(𝐺‘0))) |
210 | 199, 207,
208, 209 | fmptco 7001 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐹 ∘ 𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0)))) |
211 | | fconstmpt 5649 |
. . . . 5
⊢ (ℂ
× {(𝐹‘(𝐺‘0))}) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0))) |
212 | 210, 211 | eqtr4di 2796 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐹 ∘ 𝐺) = (ℂ × {(𝐹‘(𝐺‘0))})) |
213 | 212 | fveq2d 6778 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘(𝐹 ∘ 𝐺)) = (deg‘(ℂ × {(𝐹‘(𝐺‘0))}))) |
214 | 200 | oveq2d 7291 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0)) |
215 | 198, 213,
214 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |
216 | | dgrcl 25394 |
. . . . 5
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
217 | 1, 216 | syl 17 |
. . . 4
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
218 | 177, 217 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
219 | | elnn0 12235 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
220 | 218, 219 | sylib 217 |
. 2
⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
221 | 188, 215,
220 | mpjaodan 956 |
1
⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |