Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem2 Structured version   Visualization version   GIF version

Theorem dgrcolem2 24875
 Description: Lemma for dgrco 24876. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
dgrco.5 𝐴 = (coeff‘𝐹)
dgrco.6 (𝜑𝐷 ∈ ℕ0)
dgrco.7 (𝜑𝑀 = (𝐷 + 1))
dgrco.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
Assertion
Ref Expression
dgrcolem2 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑀   𝑓,𝑁   𝐷,𝑓   𝑓,𝐺   𝜑,𝑓
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem dgrcolem2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrco.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
2 plyf 24799 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
43ffvelrnda 6832 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
5 dgrco.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plyf 24799 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
87ffvelrnda 6832 . . . . . . . . 9 ((𝜑 ∧ (𝐺𝑥) ∈ ℂ) → (𝐹‘(𝐺𝑥)) ∈ ℂ)
94, 8syldan 594 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝐹‘(𝐺𝑥)) ∈ ℂ)
10 dgrco.5 . . . . . . . . . . . . 13 𝐴 = (coeff‘𝐹)
1110coef3 24833 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
125, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
13 dgrco.1 . . . . . . . . . . . 12 𝑀 = (deg‘𝐹)
14 dgrcl 24834 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
155, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ∈ ℕ0)
1613, 15eqeltrid 2897 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
1712, 16ffvelrnd 6833 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ∈ ℂ)
1817adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐴𝑀) ∈ ℂ)
1916adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℕ0)
204, 19expcld 13510 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑀) ∈ ℂ)
2118, 20mulcld 10654 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)) ∈ ℂ)
229, 21npcand 10994 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) = (𝐹‘(𝐺𝑥)))
2322mpteq2dva 5128 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺𝑥))))
24 cnex 10611 . . . . . . . 8 ℂ ∈ V
2524a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
269, 21subcld 10990 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ ℂ)
27 eqidd 2802 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
28 eqidd 2802 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
2925, 26, 21, 27, 28offval2 7410 . . . . . 6 (𝜑 → ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
303feqmptd 6712 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
317feqmptd 6712 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
32 fveq2 6649 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝐹𝑦) = (𝐹‘(𝐺𝑥)))
334, 30, 31, 32fmptco 6872 . . . . . 6 (𝜑 → (𝐹𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺𝑥))))
3423, 29, 333eqtr4rd 2847 . . . . 5 (𝜑 → (𝐹𝐺) = ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
3534fveq2d 6653 . . . 4 (𝜑 → (deg‘(𝐹𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
3635adantr 484 . . 3 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
3725, 9, 21, 33, 28offval2 7410 . . . . . 6 (𝜑 → ((𝐹𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
38 plyssc 24801 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3938, 5sseldi 3916 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
4038, 1sseldi 3916 . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘ℂ))
41 addcl 10612 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
4241adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
43 mulcl 10614 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
4443adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
4539, 40, 42, 44plyco 24842 . . . . . . 7 (𝜑 → (𝐹𝐺) ∈ (Poly‘ℂ))
46 eqidd 2802 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
47 oveq1 7146 . . . . . . . . . 10 (𝑦 = (𝐺𝑥) → (𝑦𝑀) = ((𝐺𝑥)↑𝑀))
4847oveq2d 7155 . . . . . . . . 9 (𝑦 = (𝐺𝑥) → ((𝐴𝑀) · (𝑦𝑀)) = ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))
494, 30, 46, 48fmptco 6872 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
50 ssidd 3941 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
51 eqid 2801 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))
5251ply1term 24805 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ (𝐴𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ))
5350, 17, 16, 52syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ))
5453, 40, 42, 44plyco 24842 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∘ 𝐺) ∈ (Poly‘ℂ))
5549, 54eqeltrrd 2894 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ))
56 plysubcl 24823 . . . . . . 7 (((𝐹𝐺) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ)) → ((𝐹𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5745, 55, 56syl2anc 587 . . . . . 6 (𝜑 → ((𝐹𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5837, 57eqeltrrd 2894 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5958adantr 484 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
6055adantr 484 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ))
61 dgrco.7 . . . . . . . . . . 11 (𝜑𝑀 = (𝐷 + 1))
62 dgrco.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
63 nn0p1nn 11928 . . . . . . . . . . . 12 (𝐷 ∈ ℕ0 → (𝐷 + 1) ∈ ℕ)
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (𝐷 + 1) ∈ ℕ)
6561, 64eqeltrd 2893 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
6665nngt0d 11678 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
67 fveq2 6649 . . . . . . . . . . 11 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (deg‘0𝑝))
68 dgr0 24863 . . . . . . . . . . 11 (deg‘0𝑝) = 0
6967, 68eqtrdi 2852 . . . . . . . . . 10 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = 0)
7069breq1d 5043 . . . . . . . . 9 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ 0 < 𝑀))
7166, 70syl5ibrcom 250 . . . . . . . 8 (𝜑 → ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
72 idd 24 . . . . . . . 8 (𝜑 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
73 eqid 2801 . . . . . . . . . . . 12 (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
7413, 73dgrsub 24873 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀))
7539, 53, 74syl2anc 587 . . . . . . . . . 10 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀))
7665nnne0d 11679 . . . . . . . . . . . . . 14 (𝜑𝑀 ≠ 0)
7713, 10dgreq0 24866 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑀) = 0))
785, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑀) = 0))
79 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
8079, 68eqtrdi 2852 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
8113, 80syl5eq 2848 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝𝑀 = 0)
8278, 81syl6bir 257 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑀) = 0 → 𝑀 = 0))
8382necon3d 3011 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ≠ 0 → (𝐴𝑀) ≠ 0))
8476, 83mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ≠ 0)
8551dgr1term 24861 . . . . . . . . . . . . 13 (((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0 ∧ 𝑀 ∈ ℕ0) → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 𝑀)
8617, 84, 16, 85syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 𝑀)
8786ifeq1d 4446 . . . . . . . . . . 11 (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀) = if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀, 𝑀))
88 ifid 4467 . . . . . . . . . . 11 if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀, 𝑀) = 𝑀
8987, 88eqtrdi 2852 . . . . . . . . . 10 (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀) = 𝑀)
9075, 89breqtrd 5059 . . . . . . . . 9 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀)
91 eqid 2801 . . . . . . . . . . . . 13 (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
9210, 91coesub 24858 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
9339, 53, 92syl2anc 587 . . . . . . . . . . 11 (𝜑 → (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
9493fveq1d 6651 . . . . . . . . . 10 (𝜑 → ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀))
9512ffnd 6492 . . . . . . . . . . . 12 (𝜑𝐴 Fn ℕ0)
9691coef3 24833 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ) → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))):ℕ0⟶ℂ)
9753, 96syl 17 . . . . . . . . . . . . 13 (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))):ℕ0⟶ℂ)
9897ffnd 6492 . . . . . . . . . . . 12 (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) Fn ℕ0)
99 nn0ex 11895 . . . . . . . . . . . . 13 0 ∈ V
10099a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
101 inidm 4148 . . . . . . . . . . . 12 (ℕ0 ∩ ℕ0) = ℕ0
102 eqidd 2802 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ ℕ0) → (𝐴𝑀) = (𝐴𝑀))
10351coe1term 24860 . . . . . . . . . . . . . . 15 (((𝐴𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴𝑀), 0))
10417, 16, 16, 103syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴𝑀), 0))
105 eqid 2801 . . . . . . . . . . . . . . 15 𝑀 = 𝑀
106105iftruei 4435 . . . . . . . . . . . . . 14 if(𝑀 = 𝑀, (𝐴𝑀), 0) = (𝐴𝑀)
107104, 106eqtrdi 2852 . . . . . . . . . . . . 13 (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = (𝐴𝑀))
108107adantr 484 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ ℕ0) → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = (𝐴𝑀))
10995, 98, 100, 100, 101, 102, 108ofval 7402 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℕ0) → ((𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑀) − (𝐴𝑀)))
11016, 109mpdan 686 . . . . . . . . . 10 (𝜑 → ((𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑀) − (𝐴𝑀)))
11117subidd 10978 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀) − (𝐴𝑀)) = 0)
11294, 110, 1113eqtrd 2840 . . . . . . . . 9 (𝜑 → ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)
113 plysubcl 24823 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ))
11439, 53, 113syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ))
115 eqid 2801 . . . . . . . . . . 11 (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))
116 eqid 2801 . . . . . . . . . . 11 (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))
117115, 116dgrlt 24867 . . . . . . . . . 10 (((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ) ∧ 𝑀 ∈ ℕ0) → (((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀) ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)))
118114, 16, 117syl2anc 587 . . . . . . . . 9 (𝜑 → (((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀) ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)))
11990, 112, 118mpbir2and 712 . . . . . . . 8 (𝜑 → ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
12071, 72, 119mpjaod 857 . . . . . . 7 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀)
121120adantr 484 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀)
122 dgrcl 24834 . . . . . . . . . 10 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0)
123114, 122syl 17 . . . . . . . . 9 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0)
124123nn0red 11948 . . . . . . . 8 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ)
125124adantr 484 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ)
12616nn0red 11948 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
127126adantr 484 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
128 nnre 11636 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
129128adantl 485 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
130 nngt0 11660 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
131130adantl 485 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 𝑁)
132 ltmul1 11483 . . . . . . 7 (((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁)))
133125, 127, 129, 131, 132syl112anc 1371 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁)))
134121, 133mpbid 235 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁))
1357ffvelrnda 6832 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐹𝑦) ∈ ℂ)
13617adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (𝐴𝑀) ∈ ℂ)
137 id 22 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
138 expcl 13447 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦𝑀) ∈ ℂ)
139137, 16, 138syl2anr 599 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑀) ∈ ℂ)
140136, 139mulcld 10654 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((𝐴𝑀) · (𝑦𝑀)) ∈ ℂ)
14125, 135, 140, 31, 46offval2 7410 . . . . . . . . 9 (𝜑 → (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝐹𝑦) − ((𝐴𝑀) · (𝑦𝑀)))))
14232, 48oveq12d 7157 . . . . . . . . 9 (𝑦 = (𝐺𝑥) → ((𝐹𝑦) − ((𝐴𝑀) · (𝑦𝑀))) = ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
1434, 30, 141, 142fmptco 6872 . . . . . . . 8 (𝜑 → ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
144143fveq2d 6653 . . . . . . 7 (𝜑 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
145120, 61breqtrd 5059 . . . . . . . . 9 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1))
146 nn0leltp1 12033 . . . . . . . . . 10 (((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0𝐷 ∈ ℕ0) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1)))
147123, 62, 146syl2anc 587 . . . . . . . . 9 (𝜑 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1)))
148145, 147mpbird 260 . . . . . . . 8 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷)
149 fveq2 6649 . . . . . . . . . . 11 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (deg‘𝑓) = (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
150149breq1d 5043 . . . . . . . . . 10 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘𝑓) ≤ 𝐷 ↔ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷))
151 coeq1 5696 . . . . . . . . . . . 12 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (𝑓𝐺) = ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺))
152151fveq2d 6653 . . . . . . . . . . 11 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (deg‘(𝑓𝐺)) = (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)))
153149oveq1d 7154 . . . . . . . . . . 11 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘𝑓) · 𝑁) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
154152, 153eqeq12d 2817 . . . . . . . . . 10 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁)))
155150, 154imbi12d 348 . . . . . . . . 9 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))))
156 dgrco.8 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
157155, 156, 114rspcdva 3576 . . . . . . . 8 (𝜑 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁)))
158148, 157mpd 15 . . . . . . 7 (𝜑 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
159144, 158eqtr3d 2838 . . . . . 6 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
160159adantr 484 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
161 fconstmpt 5582 . . . . . . . . . . 11 (ℂ × {(𝐴𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴𝑀))
162161a1i 11 . . . . . . . . . 10 (𝜑 → (ℂ × {(𝐴𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴𝑀)))
163 eqidd 2802 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
16425, 18, 20, 162, 163offval2 7410 . . . . . . . . 9 (𝜑 → ((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
165164fveq2d 6653 . . . . . . . 8 (𝜑 → (deg‘((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
166 eqidd 2802 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) = (𝑦 ∈ ℂ ↦ (𝑦𝑀)))
1674, 30, 166, 47fmptco 6872 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
168 1cnd 10629 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
169 plypow 24806 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∈ (Poly‘ℂ))
17050, 168, 16, 169syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∈ (Poly‘ℂ))
171170, 40, 42, 44plyco 24842 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∘ 𝐺) ∈ (Poly‘ℂ))
172167, 171eqeltrrd 2894 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) ∈ (Poly‘ℂ))
173 dgrmulc 24872 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0 ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) ∈ (Poly‘ℂ)) → (deg‘((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
17417, 84, 172, 173syl3anc 1368 . . . . . . . 8 (𝜑 → (deg‘((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
175165, 174eqtr3d 2838 . . . . . . 7 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
176175adantr 484 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
177 dgrco.2 . . . . . . 7 𝑁 = (deg‘𝐺)
17865adantr 484 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
179 simpr 488 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1801adantr 484 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
181177, 178, 179, 180dgrcolem1 24874 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
182176, 181eqtrd 2836 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑀 · 𝑁))
183134, 160, 1823brtr4d 5065 . . . 4 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
184 eqid 2801 . . . . 5 (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
185 eqid 2801 . . . . 5 (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
186184, 185dgradd2 24869 . . . 4 (((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
18759, 60, 183, 186syl3anc 1368 . . 3 ((𝜑𝑁 ∈ ℕ) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
18836, 187, 1823eqtrd 2840 . 2 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
189 0cn 10626 . . . . . . . 8 0 ∈ ℂ
190 ffvelrn 6830 . . . . . . . 8 ((𝐺:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐺‘0) ∈ ℂ)
1913, 189, 190sylancl 589 . . . . . . 7 (𝜑 → (𝐺‘0) ∈ ℂ)
1927, 191ffvelrnd 6833 . . . . . 6 (𝜑 → (𝐹‘(𝐺‘0)) ∈ ℂ)
193 0dgr 24846 . . . . . 6 ((𝐹‘(𝐺‘0)) ∈ ℂ → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0)
194192, 193syl 17 . . . . 5 (𝜑 → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0)
19516nn0cnd 11949 . . . . . 6 (𝜑𝑀 ∈ ℂ)
196195mul01d 10832 . . . . 5 (𝜑 → (𝑀 · 0) = 0)
197194, 196eqtr4d 2839 . . . 4 (𝜑 → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = (𝑀 · 0))
198197adantr 484 . . 3 ((𝜑𝑁 = 0) → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = (𝑀 · 0))
199191ad2antrr 725 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ ℂ) → (𝐺‘0) ∈ ℂ)
200 simpr 488 . . . . . . . . 9 ((𝜑𝑁 = 0) → 𝑁 = 0)
201177, 200syl5eqr 2850 . . . . . . . 8 ((𝜑𝑁 = 0) → (deg‘𝐺) = 0)
202 0dgrb 24847 . . . . . . . . . 10 (𝐺 ∈ (Poly‘𝑆) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
2031, 202syl 17 . . . . . . . . 9 (𝜑 → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
204203adantr 484 . . . . . . . 8 ((𝜑𝑁 = 0) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
205201, 204mpbid 235 . . . . . . 7 ((𝜑𝑁 = 0) → 𝐺 = (ℂ × {(𝐺‘0)}))
206 fconstmpt 5582 . . . . . . 7 (ℂ × {(𝐺‘0)}) = (𝑥 ∈ ℂ ↦ (𝐺‘0))
207205, 206eqtrdi 2852 . . . . . 6 ((𝜑𝑁 = 0) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘0)))
20831adantr 484 . . . . . 6 ((𝜑𝑁 = 0) → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
209 fveq2 6649 . . . . . 6 (𝑦 = (𝐺‘0) → (𝐹𝑦) = (𝐹‘(𝐺‘0)))
210199, 207, 208, 209fmptco 6872 . . . . 5 ((𝜑𝑁 = 0) → (𝐹𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0))))
211 fconstmpt 5582 . . . . 5 (ℂ × {(𝐹‘(𝐺‘0))}) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0)))
212210, 211eqtr4di 2854 . . . 4 ((𝜑𝑁 = 0) → (𝐹𝐺) = (ℂ × {(𝐹‘(𝐺‘0))}))
213212fveq2d 6653 . . 3 ((𝜑𝑁 = 0) → (deg‘(𝐹𝐺)) = (deg‘(ℂ × {(𝐹‘(𝐺‘0))})))
214200oveq2d 7155 . . 3 ((𝜑𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0))
215198, 213, 2143eqtr4d 2846 . 2 ((𝜑𝑁 = 0) → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
216 dgrcl 24834 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2171, 216syl 17 . . . 4 (𝜑 → (deg‘𝐺) ∈ ℕ0)
218177, 217eqeltrid 2897 . . 3 (𝜑𝑁 ∈ ℕ0)
219 elnn0 11891 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
220218, 219sylib 221 . 2 (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
221188, 215, 220mpjaodan 956 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  Vcvv 3444   ⊆ wss 3884  ifcif 4428  {csn 4528   class class class wbr 5033   ↦ cmpt 5113   × cxp 5521   ∘ ccom 5527  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863  ℕcn 11629  ℕ0cn0 11889  ↑cexp 13429  0𝑝c0p 24277  Polycply 24785  coeffccoe 24787  degcdgr 24788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-0p 24278  df-ply 24789  df-coe 24791  df-dgr 24792 This theorem is referenced by:  dgrco  24876
 Copyright terms: Public domain W3C validator