MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem2 Structured version   Visualization version   GIF version

Theorem dgrcolem2 24321
Description: Lemma for dgrco 24322. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
dgrco.5 𝐴 = (coeff‘𝐹)
dgrco.6 (𝜑𝐷 ∈ ℕ0)
dgrco.7 (𝜑𝑀 = (𝐷 + 1))
dgrco.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
Assertion
Ref Expression
dgrcolem2 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑀   𝑓,𝑁   𝐷,𝑓   𝑓,𝐺   𝜑,𝑓
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem dgrcolem2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrco.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
2 plyf 24245 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
43ffvelrnda 6549 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
5 dgrco.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plyf 24245 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
87ffvelrnda 6549 . . . . . . . . 9 ((𝜑 ∧ (𝐺𝑥) ∈ ℂ) → (𝐹‘(𝐺𝑥)) ∈ ℂ)
94, 8syldan 585 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝐹‘(𝐺𝑥)) ∈ ℂ)
10 dgrco.5 . . . . . . . . . . . . 13 𝐴 = (coeff‘𝐹)
1110coef3 24279 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
125, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
13 dgrco.1 . . . . . . . . . . . 12 𝑀 = (deg‘𝐹)
14 dgrcl 24280 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
155, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ∈ ℕ0)
1613, 15syl5eqel 2848 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
1712, 16ffvelrnd 6550 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ∈ ℂ)
1817adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐴𝑀) ∈ ℂ)
1916adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℕ0)
204, 19expcld 13215 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑀) ∈ ℂ)
2118, 20mulcld 10314 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)) ∈ ℂ)
229, 21npcand 10650 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) = (𝐹‘(𝐺𝑥)))
2322mpteq2dva 4903 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺𝑥))))
24 cnex 10270 . . . . . . . 8 ℂ ∈ V
2524a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
269, 21subcld 10646 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ ℂ)
27 eqidd 2766 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
28 eqidd 2766 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
2925, 26, 21, 27, 28offval2 7112 . . . . . 6 (𝜑 → ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
303feqmptd 6438 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
317feqmptd 6438 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
32 fveq2 6375 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝐹𝑦) = (𝐹‘(𝐺𝑥)))
334, 30, 31, 32fmptco 6587 . . . . . 6 (𝜑 → (𝐹𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺𝑥))))
3423, 29, 333eqtr4rd 2810 . . . . 5 (𝜑 → (𝐹𝐺) = ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
3534fveq2d 6379 . . . 4 (𝜑 → (deg‘(𝐹𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
3635adantr 472 . . 3 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
3725, 9, 21, 33, 28offval2 7112 . . . . . 6 (𝜑 → ((𝐹𝐺) ∘𝑓 − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
38 plyssc 24247 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3938, 5sseldi 3759 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
4038, 1sseldi 3759 . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘ℂ))
41 addcl 10271 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
4241adantl 473 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
43 mulcl 10273 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
4443adantl 473 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
4539, 40, 42, 44plyco 24288 . . . . . . 7 (𝜑 → (𝐹𝐺) ∈ (Poly‘ℂ))
46 eqidd 2766 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
47 oveq1 6849 . . . . . . . . . 10 (𝑦 = (𝐺𝑥) → (𝑦𝑀) = ((𝐺𝑥)↑𝑀))
4847oveq2d 6858 . . . . . . . . 9 (𝑦 = (𝐺𝑥) → ((𝐴𝑀) · (𝑦𝑀)) = ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))
494, 30, 46, 48fmptco 6587 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
50 ssidd 3784 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
51 eqid 2765 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))
5251ply1term 24251 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ (𝐴𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ))
5350, 17, 16, 52syl3anc 1490 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ))
5453, 40, 42, 44plyco 24288 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∘ 𝐺) ∈ (Poly‘ℂ))
5549, 54eqeltrrd 2845 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ))
56 plysubcl 24269 . . . . . . 7 (((𝐹𝐺) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ)) → ((𝐹𝐺) ∘𝑓 − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5745, 55, 56syl2anc 579 . . . . . 6 (𝜑 → ((𝐹𝐺) ∘𝑓 − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5837, 57eqeltrrd 2845 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5958adantr 472 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
6055adantr 472 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ))
61 dgrco.7 . . . . . . . . . . 11 (𝜑𝑀 = (𝐷 + 1))
62 dgrco.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
63 nn0p1nn 11579 . . . . . . . . . . . 12 (𝐷 ∈ ℕ0 → (𝐷 + 1) ∈ ℕ)
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (𝐷 + 1) ∈ ℕ)
6561, 64eqeltrd 2844 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
6665nngt0d 11321 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
67 fveq2 6375 . . . . . . . . . . 11 ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (deg‘0𝑝))
68 dgr0 24309 . . . . . . . . . . 11 (deg‘0𝑝) = 0
6967, 68syl6eq 2815 . . . . . . . . . 10 ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = 0)
7069breq1d 4819 . . . . . . . . 9 ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ 0 < 𝑀))
7166, 70syl5ibrcom 238 . . . . . . . 8 (𝜑 → ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
72 idd 24 . . . . . . . 8 (𝜑 → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
73 eqid 2765 . . . . . . . . . . . 12 (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
7413, 73dgrsub 24319 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀))
7539, 53, 74syl2anc 579 . . . . . . . . . 10 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀))
7665nnne0d 11322 . . . . . . . . . . . . . 14 (𝜑𝑀 ≠ 0)
7713, 10dgreq0 24312 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑀) = 0))
785, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑀) = 0))
79 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
8079, 68syl6eq 2815 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
8113, 80syl5eq 2811 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝𝑀 = 0)
8278, 81syl6bir 245 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑀) = 0 → 𝑀 = 0))
8382necon3d 2958 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ≠ 0 → (𝐴𝑀) ≠ 0))
8476, 83mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ≠ 0)
8551dgr1term 24307 . . . . . . . . . . . . 13 (((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0 ∧ 𝑀 ∈ ℕ0) → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 𝑀)
8617, 84, 16, 85syl3anc 1490 . . . . . . . . . . . 12 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 𝑀)
8786ifeq1d 4261 . . . . . . . . . . 11 (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀) = if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀, 𝑀))
88 ifid 4282 . . . . . . . . . . 11 if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀, 𝑀) = 𝑀
8987, 88syl6eq 2815 . . . . . . . . . 10 (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀) = 𝑀)
9075, 89breqtrd 4835 . . . . . . . . 9 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀)
91 eqid 2765 . . . . . . . . . . . . 13 (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
9210, 91coesub 24304 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (𝐴𝑓 − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
9339, 53, 92syl2anc 579 . . . . . . . . . . 11 (𝜑 → (coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (𝐴𝑓 − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
9493fveq1d 6377 . . . . . . . . . 10 (𝜑 → ((coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑓 − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀))
9512ffnd 6224 . . . . . . . . . . . 12 (𝜑𝐴 Fn ℕ0)
9691coef3 24279 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ) → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))):ℕ0⟶ℂ)
9753, 96syl 17 . . . . . . . . . . . . 13 (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))):ℕ0⟶ℂ)
9897ffnd 6224 . . . . . . . . . . . 12 (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) Fn ℕ0)
99 nn0ex 11545 . . . . . . . . . . . . 13 0 ∈ V
10099a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
101 inidm 3982 . . . . . . . . . . . 12 (ℕ0 ∩ ℕ0) = ℕ0
102 eqidd 2766 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ ℕ0) → (𝐴𝑀) = (𝐴𝑀))
10351coe1term 24306 . . . . . . . . . . . . . . 15 (((𝐴𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴𝑀), 0))
10417, 16, 16, 103syl3anc 1490 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴𝑀), 0))
105 eqid 2765 . . . . . . . . . . . . . . 15 𝑀 = 𝑀
106105iftruei 4250 . . . . . . . . . . . . . 14 if(𝑀 = 𝑀, (𝐴𝑀), 0) = (𝐴𝑀)
107104, 106syl6eq 2815 . . . . . . . . . . . . 13 (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = (𝐴𝑀))
108107adantr 472 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ ℕ0) → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = (𝐴𝑀))
10995, 98, 100, 100, 101, 102, 108ofval 7104 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℕ0) → ((𝐴𝑓 − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑀) − (𝐴𝑀)))
11016, 109mpdan 678 . . . . . . . . . 10 (𝜑 → ((𝐴𝑓 − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑀) − (𝐴𝑀)))
11117subidd 10634 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀) − (𝐴𝑀)) = 0)
11294, 110, 1113eqtrd 2803 . . . . . . . . 9 (𝜑 → ((coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)
113 plysubcl 24269 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ))
11439, 53, 113syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ))
115 eqid 2765 . . . . . . . . . . 11 (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))
116 eqid 2765 . . . . . . . . . . 11 (coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))
117115, 116dgrlt 24313 . . . . . . . . . 10 (((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ) ∧ 𝑀 ∈ ℕ0) → (((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀) ↔ ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)))
118114, 16, 117syl2anc 579 . . . . . . . . 9 (𝜑 → (((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀) ↔ ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)))
11990, 112, 118mpbir2and 704 . . . . . . . 8 (𝜑 → ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
12071, 72, 119mpjaod 886 . . . . . . 7 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀)
121120adantr 472 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀)
122 dgrcl 24280 . . . . . . . . . 10 ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ) → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0)
123114, 122syl 17 . . . . . . . . 9 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0)
124123nn0red 11599 . . . . . . . 8 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ)
125124adantr 472 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ)
12616nn0red 11599 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
127126adantr 472 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
128 nnre 11282 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
129128adantl 473 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
130 nngt0 11306 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
131130adantl 473 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 𝑁)
132 ltmul1 11127 . . . . . . 7 (((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁)))
133125, 127, 129, 131, 132syl112anc 1493 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁)))
134121, 133mpbid 223 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁))
1357ffvelrnda 6549 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐹𝑦) ∈ ℂ)
13617adantr 472 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (𝐴𝑀) ∈ ℂ)
137 id 22 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
138 expcl 13085 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦𝑀) ∈ ℂ)
139137, 16, 138syl2anr 590 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑀) ∈ ℂ)
140136, 139mulcld 10314 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((𝐴𝑀) · (𝑦𝑀)) ∈ ℂ)
14125, 135, 140, 31, 46offval2 7112 . . . . . . . . 9 (𝜑 → (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝐹𝑦) − ((𝐴𝑀) · (𝑦𝑀)))))
14232, 48oveq12d 6860 . . . . . . . . 9 (𝑦 = (𝐺𝑥) → ((𝐹𝑦) − ((𝐴𝑀) · (𝑦𝑀))) = ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
1434, 30, 141, 142fmptco 6587 . . . . . . . 8 (𝜑 → ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
144143fveq2d 6379 . . . . . . 7 (𝜑 → (deg‘((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
145120, 61breqtrd 4835 . . . . . . . . 9 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1))
146 nn0leltp1 11683 . . . . . . . . . 10 (((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0𝐷 ∈ ℕ0) → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1)))
147123, 62, 146syl2anc 579 . . . . . . . . 9 (𝜑 → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1)))
148145, 147mpbird 248 . . . . . . . 8 (𝜑 → (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷)
149 fveq2 6375 . . . . . . . . . . 11 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (deg‘𝑓) = (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
150149breq1d 4819 . . . . . . . . . 10 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘𝑓) ≤ 𝐷 ↔ (deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷))
151 coeq1 5448 . . . . . . . . . . . 12 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (𝑓𝐺) = ((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺))
152151fveq2d 6379 . . . . . . . . . . 11 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (deg‘(𝑓𝐺)) = (deg‘((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)))
153149oveq1d 6857 . . . . . . . . . . 11 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘𝑓) · 𝑁) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
154152, 153eqeq12d 2780 . . . . . . . . . 10 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁)))
155150, 154imbi12d 335 . . . . . . . . 9 (𝑓 = (𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 → (deg‘((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))))
156 dgrco.8 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
157155, 156, 114rspcdva 3467 . . . . . . . 8 (𝜑 → ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 → (deg‘((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁)))
158148, 157mpd 15 . . . . . . 7 (𝜑 → (deg‘((𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
159144, 158eqtr3d 2801 . . . . . 6 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
160159adantr 472 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = ((deg‘(𝐹𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
161 fconstmpt 5333 . . . . . . . . . . 11 (ℂ × {(𝐴𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴𝑀))
162161a1i 11 . . . . . . . . . 10 (𝜑 → (ℂ × {(𝐴𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴𝑀)))
163 eqidd 2766 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
16425, 18, 20, 162, 163offval2 7112 . . . . . . . . 9 (𝜑 → ((ℂ × {(𝐴𝑀)}) ∘𝑓 · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
165164fveq2d 6379 . . . . . . . 8 (𝜑 → (deg‘((ℂ × {(𝐴𝑀)}) ∘𝑓 · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
166 eqidd 2766 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) = (𝑦 ∈ ℂ ↦ (𝑦𝑀)))
1674, 30, 166, 47fmptco 6587 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
168 1cnd 10288 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
169 plypow 24252 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∈ (Poly‘ℂ))
17050, 168, 16, 169syl3anc 1490 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∈ (Poly‘ℂ))
171170, 40, 42, 44plyco 24288 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∘ 𝐺) ∈ (Poly‘ℂ))
172167, 171eqeltrrd 2845 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) ∈ (Poly‘ℂ))
173 dgrmulc 24318 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0 ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) ∈ (Poly‘ℂ)) → (deg‘((ℂ × {(𝐴𝑀)}) ∘𝑓 · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
17417, 84, 172, 173syl3anc 1490 . . . . . . . 8 (𝜑 → (deg‘((ℂ × {(𝐴𝑀)}) ∘𝑓 · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
175165, 174eqtr3d 2801 . . . . . . 7 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
176175adantr 472 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
177 dgrco.2 . . . . . . 7 𝑁 = (deg‘𝐺)
17865adantr 472 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
179 simpr 477 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1801adantr 472 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
181177, 178, 179, 180dgrcolem1 24320 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
182176, 181eqtrd 2799 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑀 · 𝑁))
183134, 160, 1823brtr4d 4841 . . . 4 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
184 eqid 2765 . . . . 5 (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
185 eqid 2765 . . . . 5 (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
186184, 185dgradd2 24315 . . . 4 (((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
18759, 60, 183, 186syl3anc 1490 . . 3 ((𝜑𝑁 ∈ ℕ) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
18836, 187, 1823eqtrd 2803 . 2 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
189 0cn 10285 . . . . . . . 8 0 ∈ ℂ
190 ffvelrn 6547 . . . . . . . 8 ((𝐺:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐺‘0) ∈ ℂ)
1913, 189, 190sylancl 580 . . . . . . 7 (𝜑 → (𝐺‘0) ∈ ℂ)
1927, 191ffvelrnd 6550 . . . . . 6 (𝜑 → (𝐹‘(𝐺‘0)) ∈ ℂ)
193 0dgr 24292 . . . . . 6 ((𝐹‘(𝐺‘0)) ∈ ℂ → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0)
194192, 193syl 17 . . . . 5 (𝜑 → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0)
19516nn0cnd 11600 . . . . . 6 (𝜑𝑀 ∈ ℂ)
196195mul01d 10489 . . . . 5 (𝜑 → (𝑀 · 0) = 0)
197194, 196eqtr4d 2802 . . . 4 (𝜑 → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = (𝑀 · 0))
198197adantr 472 . . 3 ((𝜑𝑁 = 0) → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = (𝑀 · 0))
199191ad2antrr 717 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ ℂ) → (𝐺‘0) ∈ ℂ)
200 simpr 477 . . . . . . . . 9 ((𝜑𝑁 = 0) → 𝑁 = 0)
201177, 200syl5eqr 2813 . . . . . . . 8 ((𝜑𝑁 = 0) → (deg‘𝐺) = 0)
202 0dgrb 24293 . . . . . . . . . 10 (𝐺 ∈ (Poly‘𝑆) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
2031, 202syl 17 . . . . . . . . 9 (𝜑 → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
204203adantr 472 . . . . . . . 8 ((𝜑𝑁 = 0) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
205201, 204mpbid 223 . . . . . . 7 ((𝜑𝑁 = 0) → 𝐺 = (ℂ × {(𝐺‘0)}))
206 fconstmpt 5333 . . . . . . 7 (ℂ × {(𝐺‘0)}) = (𝑥 ∈ ℂ ↦ (𝐺‘0))
207205, 206syl6eq 2815 . . . . . 6 ((𝜑𝑁 = 0) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘0)))
20831adantr 472 . . . . . 6 ((𝜑𝑁 = 0) → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
209 fveq2 6375 . . . . . 6 (𝑦 = (𝐺‘0) → (𝐹𝑦) = (𝐹‘(𝐺‘0)))
210199, 207, 208, 209fmptco 6587 . . . . 5 ((𝜑𝑁 = 0) → (𝐹𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0))))
211 fconstmpt 5333 . . . . 5 (ℂ × {(𝐹‘(𝐺‘0))}) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0)))
212210, 211syl6eqr 2817 . . . 4 ((𝜑𝑁 = 0) → (𝐹𝐺) = (ℂ × {(𝐹‘(𝐺‘0))}))
213212fveq2d 6379 . . 3 ((𝜑𝑁 = 0) → (deg‘(𝐹𝐺)) = (deg‘(ℂ × {(𝐹‘(𝐺‘0))})))
214200oveq2d 6858 . . 3 ((𝜑𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0))
215198, 213, 2143eqtr4d 2809 . 2 ((𝜑𝑁 = 0) → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
216 dgrcl 24280 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2171, 216syl 17 . . . 4 (𝜑 → (deg‘𝐺) ∈ ℕ0)
218177, 217syl5eqel 2848 . . 3 (𝜑𝑁 ∈ ℕ0)
219 elnn0 11540 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
220218, 219sylib 209 . 2 (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
221188, 215, 220mpjaodan 981 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  wss 3732  ifcif 4243  {csn 4334   class class class wbr 4809  cmpt 4888   × cxp 5275  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  cn 11274  0cn0 11538  cexp 13067  0𝑝c0p 23727  Polycply 24231  coeffccoe 24233  degcdgr 24234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-0p 23728  df-ply 24235  df-coe 24237  df-dgr 24238
This theorem is referenced by:  dgrco  24322
  Copyright terms: Public domain W3C validator