MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem2 Structured version   Visualization version   GIF version

Theorem dgrcolem2 25541
Description: Lemma for dgrco 25542. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
dgrco.5 𝐴 = (coeff‘𝐹)
dgrco.6 (𝜑𝐷 ∈ ℕ0)
dgrco.7 (𝜑𝑀 = (𝐷 + 1))
dgrco.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
Assertion
Ref Expression
dgrcolem2 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑀   𝑓,𝑁   𝐷,𝑓   𝑓,𝐺   𝜑,𝑓
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem dgrcolem2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrco.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
2 plyf 25465 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
43ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
5 dgrco.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plyf 25465 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
87ffvelcdmda 7017 . . . . . . . . 9 ((𝜑 ∧ (𝐺𝑥) ∈ ℂ) → (𝐹‘(𝐺𝑥)) ∈ ℂ)
94, 8syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝐹‘(𝐺𝑥)) ∈ ℂ)
10 dgrco.5 . . . . . . . . . . . . 13 𝐴 = (coeff‘𝐹)
1110coef3 25499 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
125, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
13 dgrco.1 . . . . . . . . . . . 12 𝑀 = (deg‘𝐹)
14 dgrcl 25500 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
155, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ∈ ℕ0)
1613, 15eqeltrid 2841 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
1712, 16ffvelcdmd 7018 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ∈ ℂ)
1817adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐴𝑀) ∈ ℂ)
1916adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℕ0)
204, 19expcld 13965 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑀) ∈ ℂ)
2118, 20mulcld 11096 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)) ∈ ℂ)
229, 21npcand 11437 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) = (𝐹‘(𝐺𝑥)))
2322mpteq2dva 5192 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺𝑥))))
24 cnex 11053 . . . . . . . 8 ℂ ∈ V
2524a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
269, 21subcld 11433 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ ℂ)
27 eqidd 2737 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
28 eqidd 2737 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
2925, 26, 21, 27, 28offval2 7615 . . . . . 6 (𝜑 → ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) + ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
303feqmptd 6893 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
317feqmptd 6893 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
32 fveq2 6825 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝐹𝑦) = (𝐹‘(𝐺𝑥)))
334, 30, 31, 32fmptco 7057 . . . . . 6 (𝜑 → (𝐹𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺𝑥))))
3423, 29, 333eqtr4rd 2787 . . . . 5 (𝜑 → (𝐹𝐺) = ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
3534fveq2d 6829 . . . 4 (𝜑 → (deg‘(𝐹𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
3635adantr 481 . . 3 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
3725, 9, 21, 33, 28offval2 7615 . . . . . 6 (𝜑 → ((𝐹𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
38 plyssc 25467 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3938, 5sselid 3930 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
4038, 1sselid 3930 . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘ℂ))
41 addcl 11054 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
4241adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
43 mulcl 11056 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
4443adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
4539, 40, 42, 44plyco 25508 . . . . . . 7 (𝜑 → (𝐹𝐺) ∈ (Poly‘ℂ))
46 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
47 oveq1 7344 . . . . . . . . . 10 (𝑦 = (𝐺𝑥) → (𝑦𝑀) = ((𝐺𝑥)↑𝑀))
4847oveq2d 7353 . . . . . . . . 9 (𝑦 = (𝐺𝑥) → ((𝐴𝑀) · (𝑦𝑀)) = ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))
494, 30, 46, 48fmptco 7057 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
50 ssidd 3955 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
51 eqid 2736 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))
5251ply1term 25471 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ (𝐴𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ))
5350, 17, 16, 52syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ))
5453, 40, 42, 44plyco 25508 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∘ 𝐺) ∈ (Poly‘ℂ))
5549, 54eqeltrrd 2838 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ))
56 plysubcl 25489 . . . . . . 7 (((𝐹𝐺) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ)) → ((𝐹𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5745, 55, 56syl2anc 584 . . . . . 6 (𝜑 → ((𝐹𝐺) ∘f − (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5837, 57eqeltrrd 2838 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
5958adantr 481 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ))
6055adantr 481 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ))
61 dgrco.7 . . . . . . . . . . 11 (𝜑𝑀 = (𝐷 + 1))
62 dgrco.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
63 nn0p1nn 12373 . . . . . . . . . . . 12 (𝐷 ∈ ℕ0 → (𝐷 + 1) ∈ ℕ)
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (𝐷 + 1) ∈ ℕ)
6561, 64eqeltrd 2837 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
6665nngt0d 12123 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
67 fveq2 6825 . . . . . . . . . . 11 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (deg‘0𝑝))
68 dgr0 25529 . . . . . . . . . . 11 (deg‘0𝑝) = 0
6967, 68eqtrdi 2792 . . . . . . . . . 10 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = 0)
7069breq1d 5102 . . . . . . . . 9 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ 0 < 𝑀))
7166, 70syl5ibrcom 246 . . . . . . . 8 (𝜑 → ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
72 idd 24 . . . . . . . 8 (𝜑 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
73 eqid 2736 . . . . . . . . . . . 12 (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
7413, 73dgrsub 25539 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀))
7539, 53, 74syl2anc 584 . . . . . . . . . 10 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀))
7665nnne0d 12124 . . . . . . . . . . . . . 14 (𝜑𝑀 ≠ 0)
7713, 10dgreq0 25532 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑀) = 0))
785, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑀) = 0))
79 fveq2 6825 . . . . . . . . . . . . . . . . . 18 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
8079, 68eqtrdi 2792 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
8113, 80eqtrid 2788 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝𝑀 = 0)
8278, 81syl6bir 253 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑀) = 0 → 𝑀 = 0))
8382necon3d 2961 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ≠ 0 → (𝐴𝑀) ≠ 0))
8476, 83mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ≠ 0)
8551dgr1term 25527 . . . . . . . . . . . . 13 (((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0 ∧ 𝑀 ∈ ℕ0) → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 𝑀)
8617, 84, 16, 85syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 𝑀)
8786ifeq1d 4492 . . . . . . . . . . 11 (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀) = if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀, 𝑀))
88 ifid 4513 . . . . . . . . . . 11 if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀, 𝑀) = 𝑀
8987, 88eqtrdi 2792 . . . . . . . . . 10 (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))), 𝑀) = 𝑀)
9075, 89breqtrd 5118 . . . . . . . . 9 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀)
91 eqid 2736 . . . . . . . . . . . . 13 (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))
9210, 91coesub 25524 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
9339, 53, 92syl2anc 584 . . . . . . . . . . 11 (𝜑 → (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
9493fveq1d 6827 . . . . . . . . . 10 (𝜑 → ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀))
9512ffnd 6652 . . . . . . . . . . . 12 (𝜑𝐴 Fn ℕ0)
9691coef3 25499 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ) → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))):ℕ0⟶ℂ)
9753, 96syl 17 . . . . . . . . . . . . 13 (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))):ℕ0⟶ℂ)
9897ffnd 6652 . . . . . . . . . . . 12 (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) Fn ℕ0)
99 nn0ex 12340 . . . . . . . . . . . . 13 0 ∈ V
10099a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
101 inidm 4165 . . . . . . . . . . . 12 (ℕ0 ∩ ℕ0) = ℕ0
102 eqidd 2737 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ ℕ0) → (𝐴𝑀) = (𝐴𝑀))
10351coe1term 25526 . . . . . . . . . . . . . . 15 (((𝐴𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴𝑀), 0))
10417, 16, 16, 103syl3anc 1370 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴𝑀), 0))
105 eqid 2736 . . . . . . . . . . . . . . 15 𝑀 = 𝑀
106105iftruei 4480 . . . . . . . . . . . . . 14 if(𝑀 = 𝑀, (𝐴𝑀), 0) = (𝐴𝑀)
107104, 106eqtrdi 2792 . . . . . . . . . . . . 13 (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = (𝐴𝑀))
108107adantr 481 . . . . . . . . . . . 12 ((𝜑𝑀 ∈ ℕ0) → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))‘𝑀) = (𝐴𝑀))
10995, 98, 100, 100, 101, 102, 108ofval 7606 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℕ0) → ((𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑀) − (𝐴𝑀)))
11016, 109mpdan 684 . . . . . . . . . 10 (𝜑 → ((𝐴f − (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = ((𝐴𝑀) − (𝐴𝑀)))
11117subidd 11421 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀) − (𝐴𝑀)) = 0)
11294, 110, 1113eqtrd 2780 . . . . . . . . 9 (𝜑 → ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)
113 plysubcl 25489 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))) ∈ (Poly‘ℂ)) → (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ))
11439, 53, 113syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ))
115 eqid 2736 . . . . . . . . . . 11 (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))
116 eqid 2736 . . . . . . . . . . 11 (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) = (coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))
117115, 116dgrlt 25533 . . . . . . . . . 10 (((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ) ∧ 𝑀 ∈ ℕ0) → (((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀) ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)))
118114, 16, 117syl2anc 584 . . . . . . . . 9 (𝜑 → (((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀) ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))))‘𝑀) = 0)))
11990, 112, 118mpbir2and 710 . . . . . . . 8 (𝜑 → ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = 0𝑝 ∨ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀))
12071, 72, 119mpjaod 857 . . . . . . 7 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀)
121120adantr 481 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀)
122 dgrcl 25500 . . . . . . . . . 10 ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∈ (Poly‘ℂ) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0)
123114, 122syl 17 . . . . . . . . 9 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0)
124123nn0red 12395 . . . . . . . 8 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ)
125124adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ)
12616nn0red 12395 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
127126adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
128 nnre 12081 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
129128adantl 482 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
130 nngt0 12105 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
131130adantl 482 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 𝑁)
132 ltmul1 11926 . . . . . . 7 (((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁)))
133125, 127, 129, 131, 132syl112anc 1373 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < 𝑀 ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁)))
134121, 133mpbid 231 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁) < (𝑀 · 𝑁))
1357ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐹𝑦) ∈ ℂ)
13617adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (𝐴𝑀) ∈ ℂ)
137 id 22 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
138 expcl 13901 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦𝑀) ∈ ℂ)
139137, 16, 138syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑀) ∈ ℂ)
140136, 139mulcld 11096 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((𝐴𝑀) · (𝑦𝑀)) ∈ ℂ)
14125, 135, 140, 31, 46offval2 7615 . . . . . . . . 9 (𝜑 → (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝐹𝑦) − ((𝐴𝑀) · (𝑦𝑀)))))
14232, 48oveq12d 7355 . . . . . . . . 9 (𝑦 = (𝐺𝑥) → ((𝐹𝑦) − ((𝐴𝑀) · (𝑦𝑀))) = ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
1434, 30, 141, 142fmptco 7057 . . . . . . . 8 (𝜑 → ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
144143fveq2d 6829 . . . . . . 7 (𝜑 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))))
145120, 61breqtrd 5118 . . . . . . . . 9 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1))
146 nn0leltp1 12480 . . . . . . . . . 10 (((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ∈ ℕ0𝐷 ∈ ℕ0) → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1)))
147123, 62, 146syl2anc 584 . . . . . . . . 9 (𝜑 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) < (𝐷 + 1)))
148145, 147mpbird 256 . . . . . . . 8 (𝜑 → (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷)
149 fveq2 6825 . . . . . . . . . . 11 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (deg‘𝑓) = (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))))
150149breq1d 5102 . . . . . . . . . 10 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘𝑓) ≤ 𝐷 ↔ (deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷))
151 coeq1 5799 . . . . . . . . . . . 12 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (𝑓𝐺) = ((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺))
152151fveq2d 6829 . . . . . . . . . . 11 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (deg‘(𝑓𝐺)) = (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)))
153149oveq1d 7352 . . . . . . . . . . 11 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘𝑓) · 𝑁) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
154152, 153eqeq12d 2752 . . . . . . . . . 10 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁)))
155150, 154imbi12d 344 . . . . . . . . 9 (𝑓 = (𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) → (((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))))
156 dgrco.8 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
157155, 156, 114rspcdva 3571 . . . . . . . 8 (𝜑 → ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) ≤ 𝐷 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁)))
158148, 157mpd 15 . . . . . . 7 (𝜑 → (deg‘((𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
159144, 158eqtr3d 2778 . . . . . 6 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
160159adantr 481 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = ((deg‘(𝐹f − (𝑦 ∈ ℂ ↦ ((𝐴𝑀) · (𝑦𝑀))))) · 𝑁))
161 fconstmpt 5680 . . . . . . . . . . 11 (ℂ × {(𝐴𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴𝑀))
162161a1i 11 . . . . . . . . . 10 (𝜑 → (ℂ × {(𝐴𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴𝑀)))
163 eqidd 2737 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
16425, 18, 20, 162, 163offval2 7615 . . . . . . . . 9 (𝜑 → ((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
165164fveq2d 6829 . . . . . . . 8 (𝜑 → (deg‘((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
166 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) = (𝑦 ∈ ℂ ↦ (𝑦𝑀)))
1674, 30, 166, 47fmptco 7057 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
168 1cnd 11071 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
169 plypow 25472 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∈ (Poly‘ℂ))
17050, 168, 16, 169syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∈ (Poly‘ℂ))
171170, 40, 42, 44plyco 25508 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦𝑀)) ∘ 𝐺) ∈ (Poly‘ℂ))
172167, 171eqeltrrd 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) ∈ (Poly‘ℂ))
173 dgrmulc 25538 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0 ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)) ∈ (Poly‘ℂ)) → (deg‘((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
17417, 84, 172, 173syl3anc 1370 . . . . . . . 8 (𝜑 → (deg‘((ℂ × {(𝐴𝑀)}) ∘f · (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
175165, 174eqtr3d 2778 . . . . . . 7 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
176175adantr 481 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
177 dgrco.2 . . . . . . 7 𝑁 = (deg‘𝐺)
17865adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
179 simpr 485 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1801adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
181177, 178, 179, 180dgrcolem1 25540 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
182176, 181eqtrd 2776 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (𝑀 · 𝑁))
183134, 160, 1823brtr4d 5124 . . . 4 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
184 eqid 2736 . . . . 5 (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
185 eqid 2736 . . . . 5 (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))
186184, 185dgradd2 25535 . . . 4 (((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))) ∈ (Poly‘ℂ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
18759, 60, 183, 186syl3anc 1370 . . 3 ((𝜑𝑁 ∈ ℕ) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺𝑥)) − ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))) ∘f + (𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴𝑀) · ((𝐺𝑥)↑𝑀)))))
18836, 187, 1823eqtrd 2780 . 2 ((𝜑𝑁 ∈ ℕ) → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
189 0cn 11068 . . . . . . . 8 0 ∈ ℂ
190 ffvelcdm 7015 . . . . . . . 8 ((𝐺:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐺‘0) ∈ ℂ)
1913, 189, 190sylancl 586 . . . . . . 7 (𝜑 → (𝐺‘0) ∈ ℂ)
1927, 191ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐹‘(𝐺‘0)) ∈ ℂ)
193 0dgr 25512 . . . . . 6 ((𝐹‘(𝐺‘0)) ∈ ℂ → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0)
194192, 193syl 17 . . . . 5 (𝜑 → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0)
19516nn0cnd 12396 . . . . . 6 (𝜑𝑀 ∈ ℂ)
196195mul01d 11275 . . . . 5 (𝜑 → (𝑀 · 0) = 0)
197194, 196eqtr4d 2779 . . . 4 (𝜑 → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = (𝑀 · 0))
198197adantr 481 . . 3 ((𝜑𝑁 = 0) → (deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = (𝑀 · 0))
199191ad2antrr 723 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ ℂ) → (𝐺‘0) ∈ ℂ)
200 simpr 485 . . . . . . . . 9 ((𝜑𝑁 = 0) → 𝑁 = 0)
201177, 200eqtr3id 2790 . . . . . . . 8 ((𝜑𝑁 = 0) → (deg‘𝐺) = 0)
202 0dgrb 25513 . . . . . . . . . 10 (𝐺 ∈ (Poly‘𝑆) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
2031, 202syl 17 . . . . . . . . 9 (𝜑 → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
204203adantr 481 . . . . . . . 8 ((𝜑𝑁 = 0) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)})))
205201, 204mpbid 231 . . . . . . 7 ((𝜑𝑁 = 0) → 𝐺 = (ℂ × {(𝐺‘0)}))
206 fconstmpt 5680 . . . . . . 7 (ℂ × {(𝐺‘0)}) = (𝑥 ∈ ℂ ↦ (𝐺‘0))
207205, 206eqtrdi 2792 . . . . . 6 ((𝜑𝑁 = 0) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘0)))
20831adantr 481 . . . . . 6 ((𝜑𝑁 = 0) → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
209 fveq2 6825 . . . . . 6 (𝑦 = (𝐺‘0) → (𝐹𝑦) = (𝐹‘(𝐺‘0)))
210199, 207, 208, 209fmptco 7057 . . . . 5 ((𝜑𝑁 = 0) → (𝐹𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0))))
211 fconstmpt 5680 . . . . 5 (ℂ × {(𝐹‘(𝐺‘0))}) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0)))
212210, 211eqtr4di 2794 . . . 4 ((𝜑𝑁 = 0) → (𝐹𝐺) = (ℂ × {(𝐹‘(𝐺‘0))}))
213212fveq2d 6829 . . 3 ((𝜑𝑁 = 0) → (deg‘(𝐹𝐺)) = (deg‘(ℂ × {(𝐹‘(𝐺‘0))})))
214200oveq2d 7353 . . 3 ((𝜑𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0))
215198, 213, 2143eqtr4d 2786 . 2 ((𝜑𝑁 = 0) → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
216 dgrcl 25500 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2171, 216syl 17 . . . 4 (𝜑 → (deg‘𝐺) ∈ ℕ0)
218177, 217eqeltrid 2841 . . 3 (𝜑𝑁 ∈ ℕ0)
219 elnn0 12336 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
220218, 219sylib 217 . 2 (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
221188, 215, 220mpjaodan 956 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  wral 3061  Vcvv 3441  wss 3898  ifcif 4473  {csn 4573   class class class wbr 5092  cmpt 5175   × cxp 5618  ccom 5624  wf 6475  cfv 6479  (class class class)co 7337  f cof 7593  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977   < clt 11110  cle 11111  cmin 11306  cn 12074  0cn0 12334  cexp 13883  0𝑝c0p 24939  Polycply 25451  coeffccoe 25453  degcdgr 25454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-rlim 15297  df-sum 15497  df-0p 24940  df-ply 25455  df-coe 25457  df-dgr 25458
This theorem is referenced by:  dgrco  25542
  Copyright terms: Public domain W3C validator