![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumdchr | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
sumdchr.g | ⊢ 𝐺 = (DChr‘𝑁) |
sumdchr.d | ⊢ 𝐷 = (Base‘𝐺) |
sumdchr.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
sumdchr.1 | ⊢ 1 = (1r‘𝑍) |
sumdchr.b | ⊢ 𝐵 = (Base‘𝑍) |
sumdchr.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
sumdchr.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
sumdchr | ⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘𝐴) = if(𝐴 = 1 , (ϕ‘𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdchr.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | sumdchr.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
3 | sumdchr.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
4 | sumdchr.1 | . . 3 ⊢ 1 = (1r‘𝑍) | |
5 | sumdchr.b | . . 3 ⊢ 𝐵 = (Base‘𝑍) | |
6 | sumdchr.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
7 | sumdchr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | sumdchr2 27323 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘𝐴) = if(𝐴 = 1 , (♯‘𝐷), 0)) |
9 | 1, 2 | dchrhash 27324 | . . . 4 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘𝐷) = (ϕ‘𝑁)) |
11 | 10 | ifeq1d 4567 | . 2 ⊢ (𝜑 → if(𝐴 = 1 , (♯‘𝐷), 0) = if(𝐴 = 1 , (ϕ‘𝑁), 0)) |
12 | 8, 11 | eqtrd 2774 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘𝐴) = if(𝐴 = 1 , (ϕ‘𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 ifcif 4548 ‘cfv 6572 0cc0 11180 ℕcn 12289 ♯chash 14375 Σcsu 15730 ϕcphi 16806 Basecbs 17253 1rcur 20203 ℤ/nℤczn 21531 DChrcdchr 27285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 ax-addf 11259 ax-mulf 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-iin 5022 df-disj 5137 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-rpss 7754 df-om 7900 df-1st 8026 df-2nd 8027 df-supp 8198 df-tpos 8263 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-oadd 8522 df-omul 8523 df-er 8759 df-ec 8761 df-qs 8765 df-map 8882 df-pm 8883 df-ixp 8952 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-fsupp 9428 df-fi 9476 df-sup 9507 df-inf 9508 df-oi 9575 df-dju 9966 df-card 10004 df-acn 10007 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-xnn0 12622 df-z 12636 df-dec 12755 df-uz 12900 df-q 13010 df-rp 13054 df-xneg 13171 df-xadd 13172 df-xmul 13173 df-ioo 13407 df-ioc 13408 df-ico 13409 df-icc 13410 df-fz 13564 df-fzo 13708 df-fl 13839 df-mod 13917 df-seq 14049 df-exp 14109 df-fac 14319 df-bc 14348 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-shft 15112 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15731 df-ef 16109 df-sin 16111 df-cos 16112 df-pi 16114 df-dvds 16297 df-gcd 16535 df-prm 16713 df-phi 16808 df-pc 16879 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-starv 17321 df-sca 17322 df-vsca 17323 df-ip 17324 df-tset 17325 df-ple 17326 df-ds 17328 df-unif 17329 df-hom 17330 df-cco 17331 df-rest 17477 df-topn 17478 df-0g 17496 df-gsum 17497 df-topgen 17498 df-pt 17499 df-prds 17502 df-xrs 17557 df-qtop 17562 df-imas 17563 df-qus 17564 df-xps 17565 df-mre 17639 df-mrc 17640 df-acs 17642 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-mhm 18813 df-submnd 18814 df-grp 18971 df-minusg 18972 df-sbg 18973 df-mulg 19103 df-subg 19158 df-nsg 19159 df-eqg 19160 df-ghm 19248 df-gim 19294 df-ga 19325 df-cntz 19352 df-oppg 19381 df-od 19565 df-gex 19566 df-pgp 19567 df-lsm 19673 df-pj1 19674 df-cmn 19819 df-abl 19820 df-cyg 19915 df-dprd 20034 df-dpj 20035 df-mgp 20157 df-rng 20175 df-ur 20204 df-ring 20257 df-cring 20258 df-oppr 20355 df-dvdsr 20378 df-unit 20379 df-invr 20409 df-rhm 20493 df-subrng 20567 df-subrg 20592 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 df-top 22914 df-topon 22931 df-topsp 22953 df-bases 22967 df-cld 23041 df-ntr 23042 df-cls 23043 df-nei 23120 df-lp 23158 df-perf 23159 df-cn 23249 df-cnp 23250 df-haus 23337 df-tx 23584 df-hmeo 23777 df-fil 23868 df-fm 23960 df-flim 23961 df-flf 23962 df-xms 24344 df-ms 24345 df-tms 24346 df-cncf 24916 df-0p 25717 df-limc 25913 df-dv 25914 df-ply 26239 df-idp 26240 df-coe 26241 df-dgr 26242 df-quot 26343 df-log 26607 df-cxp 26608 df-dchr 27286 |
This theorem is referenced by: sum2dchr 27327 |
Copyright terms: Public domain | W3C validator |