| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgz | Structured version Visualization version GIF version | ||
| Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgz | ⊢ ∫𝐴0 d𝑥 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))) | |
| 2 | 1 | dfitg 25646 | . 2 ⊢ ∫𝐴0 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) |
| 3 | ax-icn 11103 | . . . . . . . . . . . . . . 15 ⊢ i ∈ ℂ | |
| 4 | elfznn0 13557 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
| 5 | expcl 14020 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
| 7 | ine0 11589 | . . . . . . . . . . . . . . 15 ⊢ i ≠ 0 | |
| 8 | elfzelz 13461 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
| 9 | expne0i 14035 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
| 10 | 3, 7, 8, 9 | mp3an12i 1467 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ≠ 0) |
| 11 | 6, 10 | div0d 11933 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ (0...3) → (0 / (i↑𝑘)) = 0) |
| 12 | 11 | fveq2d 6844 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
| 13 | re0 15094 | . . . . . . . . . . . 12 ⊢ (ℜ‘0) = 0 | |
| 14 | 12, 13 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = 0) |
| 15 | 14 | ifeq1d 4504 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0)) |
| 16 | ifid 4525 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0) = 0 | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0) |
| 18 | 17 | mpteq2dv 5196 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)) |
| 19 | fconstmpt 5693 | . . . . . . . 8 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
| 20 | 18, 19 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (ℝ × {0})) |
| 21 | 20 | fveq2d 6844 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))) |
| 22 | itg20 25614 | . . . . . 6 ⊢ (∫2‘(ℝ × {0})) = 0 | |
| 23 | 21, 22 | eqtrdi 2780 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
| 24 | 23 | oveq2d 7385 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)) |
| 25 | 6 | mul01d 11349 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
| 26 | 24, 25 | eqtrd 2764 | . . 3 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = 0) |
| 27 | 26 | sumeq2i 15640 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
| 28 | fzfi 13913 | . . . 4 ⊢ (0...3) ∈ Fin | |
| 29 | 28 | olci 866 | . . 3 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
| 30 | sumz 15664 | . . 3 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
| 31 | 29, 30 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
| 32 | 2, 27, 31 | 3eqtri 2756 | 1 ⊢ ∫𝐴0 d𝑥 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ifcif 4484 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℂcc 11042 ℝcr 11043 0cc0 11044 ici 11046 · cmul 11049 ≤ cle 11185 / cdiv 11811 3c3 12218 ℕ0cn0 12418 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 ↑cexp 14002 ℜcre 15039 Σcsu 15628 ∫2citg2 25493 ∫citg 25495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xadd 13049 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-xmet 21233 df-met 21234 df-ovol 25341 df-vol 25342 df-mbf 25496 df-itg1 25497 df-itg2 25498 df-itg 25500 df-0p 25547 |
| This theorem is referenced by: itgge0 25688 itgfsum 25704 |
| Copyright terms: Public domain | W3C validator |