Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgz | Structured version Visualization version GIF version |
Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
itgz | ⊢ ∫𝐴0 d𝑥 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))) | |
2 | 1 | dfitg 24469 | . 2 ⊢ ∫𝐴0 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) |
3 | ax-icn 10634 | . . . . . . . . . . . . . . 15 ⊢ i ∈ ℂ | |
4 | elfznn0 13049 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
5 | expcl 13497 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 590 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
7 | ine0 11113 | . . . . . . . . . . . . . . 15 ⊢ i ≠ 0 | |
8 | elfzelz 12956 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
9 | expne0i 13511 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
10 | 3, 7, 8, 9 | mp3an12i 1462 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ≠ 0) |
11 | 6, 10 | div0d 11453 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ (0...3) → (0 / (i↑𝑘)) = 0) |
12 | 11 | fveq2d 6662 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
13 | re0 14559 | . . . . . . . . . . . 12 ⊢ (ℜ‘0) = 0 | |
14 | 12, 13 | eqtrdi 2809 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = 0) |
15 | 14 | ifeq1d 4439 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0)) |
16 | ifid 4460 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0) = 0 | |
17 | 15, 16 | eqtrdi 2809 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0) |
18 | 17 | mpteq2dv 5128 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)) |
19 | fconstmpt 5583 | . . . . . . . 8 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
20 | 18, 19 | eqtr4di 2811 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (ℝ × {0})) |
21 | 20 | fveq2d 6662 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))) |
22 | itg20 24437 | . . . . . 6 ⊢ (∫2‘(ℝ × {0})) = 0 | |
23 | 21, 22 | eqtrdi 2809 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
24 | 23 | oveq2d 7166 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)) |
25 | 6 | mul01d 10877 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
26 | 24, 25 | eqtrd 2793 | . . 3 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = 0) |
27 | 26 | sumeq2i 15104 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
28 | fzfi 13389 | . . . 4 ⊢ (0...3) ∈ Fin | |
29 | 28 | olci 863 | . . 3 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
30 | sumz 15127 | . . 3 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
31 | 29, 30 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
32 | 2, 27, 31 | 3eqtri 2785 | 1 ⊢ ∫𝐴0 d𝑥 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ⊆ wss 3858 ifcif 4420 {csn 4522 class class class wbr 5032 ↦ cmpt 5112 × cxp 5522 ‘cfv 6335 (class class class)co 7150 Fincfn 8527 ℂcc 10573 ℝcr 10574 0cc0 10575 ici 10577 · cmul 10580 ≤ cle 10714 / cdiv 11335 3c3 11730 ℕ0cn0 11934 ℤcz 12020 ℤ≥cuz 12282 ...cfz 12939 ↑cexp 13479 ℜcre 14504 Σcsu 15090 ∫2citg2 24316 ∫citg 24318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-disj 4998 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-ofr 7406 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-q 12389 df-rp 12431 df-xadd 12549 df-ioo 12783 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-sum 15091 df-xmet 20159 df-met 20160 df-ovol 24164 df-vol 24165 df-mbf 24319 df-itg1 24320 df-itg2 24321 df-itg 24323 df-0p 24370 |
This theorem is referenced by: itgge0 24510 itgfsum 24526 |
Copyright terms: Public domain | W3C validator |