MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgz Structured version   Visualization version   GIF version

Theorem itgz 25836
Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itgz 𝐴0 d𝑥 = 0

Proof of Theorem itgz
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))
21dfitg 25824 . 2 𝐴0 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))))
3 ax-icn 11243 . . . . . . . . . . . . . . 15 i ∈ ℂ
4 elfznn0 13677 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
5 expcl 14130 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
63, 4, 5sylancr 586 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
7 ine0 11725 . . . . . . . . . . . . . . 15 i ≠ 0
8 elfzelz 13584 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
9 expne0i 14145 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
103, 7, 8, 9mp3an12i 1465 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → (i↑𝑘) ≠ 0)
116, 10div0d 12069 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → (0 / (i↑𝑘)) = 0)
1211fveq2d 6924 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
13 re0 15201 . . . . . . . . . . . 12 (ℜ‘0) = 0
1412, 13eqtrdi 2796 . . . . . . . . . . 11 (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = 0)
1514ifeq1d 4567 . . . . . . . . . 10 (𝑘 ∈ (0...3) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0))
16 ifid 4588 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0) = 0
1715, 16eqtrdi 2796 . . . . . . . . 9 (𝑘 ∈ (0...3) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0)
1817mpteq2dv 5268 . . . . . . . 8 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0))
19 fconstmpt 5762 . . . . . . . 8 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2018, 19eqtr4di 2798 . . . . . . 7 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (ℝ × {0}))
2120fveq2d 6924 . . . . . 6 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0})))
22 itg20 25792 . . . . . 6 (∫2‘(ℝ × {0})) = 0
2321, 22eqtrdi 2796 . . . . 5 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
2423oveq2d 7464 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0))
256mul01d 11489 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0)
2624, 25eqtrd 2780 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = 0)
2726sumeq2i 15746 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0
28 fzfi 14023 . . . 4 (0...3) ∈ Fin
2928olci 865 . . 3 ((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin)
30 sumz 15770 . . 3 (((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0)
3129, 30ax-mp 5 . 2 Σ𝑘 ∈ (0...3)0 = 0
322, 27, 313eqtri 2772 1 𝐴0 d𝑥 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  ici 11186   · cmul 11189  cle 11325   / cdiv 11947  3c3 12349  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  cre 15146  Σcsu 15734  2citg2 25670  citg 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-itg 25677  df-0p 25724
This theorem is referenced by:  itgge0  25866  itgfsum  25882
  Copyright terms: Public domain W3C validator