| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgz | Structured version Visualization version GIF version | ||
| Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgz | ⊢ ∫𝐴0 d𝑥 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))) | |
| 2 | 1 | dfitg 25697 | . 2 ⊢ ∫𝐴0 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) |
| 3 | ax-icn 11065 | . . . . . . . . . . . . . . 15 ⊢ i ∈ ℂ | |
| 4 | elfznn0 13520 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
| 5 | expcl 13986 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
| 7 | ine0 11552 | . . . . . . . . . . . . . . 15 ⊢ i ≠ 0 | |
| 8 | elfzelz 13424 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
| 9 | expne0i 14001 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
| 10 | 3, 7, 8, 9 | mp3an12i 1467 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ≠ 0) |
| 11 | 6, 10 | div0d 11896 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ (0...3) → (0 / (i↑𝑘)) = 0) |
| 12 | 11 | fveq2d 6826 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
| 13 | re0 15059 | . . . . . . . . . . . 12 ⊢ (ℜ‘0) = 0 | |
| 14 | 12, 13 | eqtrdi 2782 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = 0) |
| 15 | 14 | ifeq1d 4492 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0)) |
| 16 | ifid 4513 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0) = 0 | |
| 17 | 15, 16 | eqtrdi 2782 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0) |
| 18 | 17 | mpteq2dv 5183 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)) |
| 19 | fconstmpt 5676 | . . . . . . . 8 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
| 20 | 18, 19 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (ℝ × {0})) |
| 21 | 20 | fveq2d 6826 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))) |
| 22 | itg20 25665 | . . . . . 6 ⊢ (∫2‘(ℝ × {0})) = 0 | |
| 23 | 21, 22 | eqtrdi 2782 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
| 24 | 23 | oveq2d 7362 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)) |
| 25 | 6 | mul01d 11312 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
| 26 | 24, 25 | eqtrd 2766 | . . 3 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = 0) |
| 27 | 26 | sumeq2i 15605 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
| 28 | fzfi 13879 | . . . 4 ⊢ (0...3) ∈ Fin | |
| 29 | 28 | olci 866 | . . 3 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
| 30 | sumz 15629 | . . 3 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
| 31 | 29, 30 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
| 32 | 2, 27, 31 | 3eqtri 2758 | 1 ⊢ ∫𝐴0 d𝑥 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ifcif 4472 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℂcc 11004 ℝcr 11005 0cc0 11006 ici 11008 · cmul 11011 ≤ cle 11147 / cdiv 11774 3c3 12181 ℕ0cn0 12381 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ↑cexp 13968 ℜcre 15004 Σcsu 15593 ∫2citg2 25544 ∫citg 25546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21284 df-met 21285 df-ovol 25392 df-vol 25393 df-mbf 25547 df-itg1 25548 df-itg2 25549 df-itg 25551 df-0p 25598 |
| This theorem is referenced by: itgge0 25739 itgfsum 25755 |
| Copyright terms: Public domain | W3C validator |