| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgz | Structured version Visualization version GIF version | ||
| Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgz | ⊢ ∫𝐴0 d𝑥 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))) | |
| 2 | 1 | dfitg 25677 | . 2 ⊢ ∫𝐴0 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) |
| 3 | ax-icn 11134 | . . . . . . . . . . . . . . 15 ⊢ i ∈ ℂ | |
| 4 | elfznn0 13588 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
| 5 | expcl 14051 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
| 7 | ine0 11620 | . . . . . . . . . . . . . . 15 ⊢ i ≠ 0 | |
| 8 | elfzelz 13492 | . . . . . . . . . . . . . . 15 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
| 9 | expne0i 14066 | . . . . . . . . . . . . . . 15 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
| 10 | 3, 7, 8, 9 | mp3an12i 1467 | . . . . . . . . . . . . . 14 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ≠ 0) |
| 11 | 6, 10 | div0d 11964 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ (0...3) → (0 / (i↑𝑘)) = 0) |
| 12 | 11 | fveq2d 6865 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
| 13 | re0 15125 | . . . . . . . . . . . 12 ⊢ (ℜ‘0) = 0 | |
| 14 | 12, 13 | eqtrdi 2781 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = 0) |
| 15 | 14 | ifeq1d 4511 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0)) |
| 16 | ifid 4532 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0) = 0 | |
| 17 | 15, 16 | eqtrdi 2781 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0) |
| 18 | 17 | mpteq2dv 5204 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)) |
| 19 | fconstmpt 5703 | . . . . . . . 8 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
| 20 | 18, 19 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (ℝ × {0})) |
| 21 | 20 | fveq2d 6865 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))) |
| 22 | itg20 25645 | . . . . . 6 ⊢ (∫2‘(ℝ × {0})) = 0 | |
| 23 | 21, 22 | eqtrdi 2781 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
| 24 | 23 | oveq2d 7406 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)) |
| 25 | 6 | mul01d 11380 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
| 26 | 24, 25 | eqtrd 2765 | . . 3 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = 0) |
| 27 | 26 | sumeq2i 15671 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
| 28 | fzfi 13944 | . . . 4 ⊢ (0...3) ∈ Fin | |
| 29 | 28 | olci 866 | . . 3 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
| 30 | sumz 15695 | . . 3 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
| 31 | 29, 30 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
| 32 | 2, 27, 31 | 3eqtri 2757 | 1 ⊢ ∫𝐴0 d𝑥 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 ifcif 4491 {csn 4592 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 ℝcr 11074 0cc0 11075 ici 11077 · cmul 11080 ≤ cle 11216 / cdiv 11842 3c3 12249 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 ↑cexp 14033 ℜcre 15070 Σcsu 15659 ∫2citg2 25524 ∫citg 25526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 df-itg 25531 df-0p 25578 |
| This theorem is referenced by: itgge0 25719 itgfsum 25735 |
| Copyright terms: Public domain | W3C validator |