Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coprmdvds2 | Structured version Visualization version GIF version |
Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.) |
Ref | Expression |
---|---|
coprmdvds2 | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divides 15694 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) | |
2 | 1 | 3adant1 1131 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
3 | 2 | adantr 484 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
4 | simprr 773 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
5 | simpl2 1193 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
6 | zcn 12060 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
7 | zcn 12060 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
8 | mulcom 10694 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) | |
9 | 6, 7, 8 | syl2an 599 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
10 | 4, 5, 9 | syl2anc 587 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
11 | 10 | breq2d 5039 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ (𝑁 · 𝑥))) |
12 | simprl 771 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1) | |
13 | simpl1 1192 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
14 | coprmdvds 16087 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∥ 𝑥)) | |
15 | 13, 5, 4, 14 | syl3anc 1372 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∥ 𝑥)) |
16 | 12, 15 | mpan2d 694 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑁 · 𝑥) → 𝑀 ∥ 𝑥)) |
17 | 11, 16 | sylbid 243 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → 𝑀 ∥ 𝑥)) |
18 | dvdsmulc 15722 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) | |
19 | 13, 4, 5, 18 | syl3anc 1372 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ 𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
20 | 17, 19 | syld 47 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
21 | breq2 5031 | . . . . . . 7 ⊢ ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ 𝐾)) | |
22 | breq2 5031 | . . . . . . 7 ⊢ ((𝑥 · 𝑁) = 𝐾 → ((𝑀 · 𝑁) ∥ (𝑥 · 𝑁) ↔ (𝑀 · 𝑁) ∥ 𝐾)) | |
23 | 21, 22 | imbi12d 348 | . . . . . 6 ⊢ ((𝑥 · 𝑁) = 𝐾 → ((𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)) ↔ (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
24 | 20, 23 | syl5ibcom 248 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
25 | 24 | anassrs 471 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
26 | 25 | rexlimdva 3193 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
27 | 3, 26 | sylbid 243 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 ∥ 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
28 | 27 | impcomd 415 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ∃wrex 3054 class class class wbr 5027 (class class class)co 7164 ℂcc 10606 1c1 10609 · cmul 10613 ℤcz 12055 ∥ cdvds 15692 gcd cgcd 15930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-sup 8972 df-inf 8973 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-z 12056 df-uz 12318 df-rp 12466 df-fl 13246 df-mod 13322 df-seq 13454 df-exp 13515 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-dvds 15693 df-gcd 15931 |
This theorem is referenced by: rpmulgcd2 16090 coprmproddvdslem 16096 crth 16208 odadd2 19081 ablfac1b 19304 ablfac1eu 19307 coprmdvds2d 39619 |
Copyright terms: Public domain | W3C validator |