MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmdvds2 Structured version   Visualization version   GIF version

Theorem coprmdvds2 16088
Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
coprmdvds2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀𝐾𝑁𝐾) → (𝑀 · 𝑁) ∥ 𝐾))

Proof of Theorem coprmdvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divides 15694 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾))
213adant1 1131 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾))
32adantr 484 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾))
4 simprr 773 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℤ)
5 simpl2 1193 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑁 ∈ ℤ)
6 zcn 12060 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 12060 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8 mulcom 10694 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) = (𝑁 · 𝑥))
96, 7, 8syl2an 599 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 · 𝑁) = (𝑁 · 𝑥))
104, 5, 9syl2anc 587 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑥 · 𝑁) = (𝑁 · 𝑥))
1110breq2d 5039 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ (𝑁 · 𝑥)))
12 simprl 771 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1)
13 simpl1 1192 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑀 ∈ ℤ)
14 coprmdvds 16087 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀𝑥))
1513, 5, 4, 14syl3anc 1372 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀𝑥))
1612, 15mpan2d 694 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑁 · 𝑥) → 𝑀𝑥))
1711, 16sylbid 243 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → 𝑀𝑥))
18 dvdsmulc 15722 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)))
1913, 4, 5, 18syl3anc 1372 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)))
2017, 19syld 47 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)))
21 breq2 5031 . . . . . . 7 ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀𝐾))
22 breq2 5031 . . . . . . 7 ((𝑥 · 𝑁) = 𝐾 → ((𝑀 · 𝑁) ∥ (𝑥 · 𝑁) ↔ (𝑀 · 𝑁) ∥ 𝐾))
2321, 22imbi12d 348 . . . . . 6 ((𝑥 · 𝑁) = 𝐾 → ((𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)) ↔ (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2420, 23syl5ibcom 248 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑥 · 𝑁) = 𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2524anassrs 471 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) = 𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2625rexlimdva 3193 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
273, 26sylbid 243 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2827impcomd 415 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀𝐾𝑁𝐾) → (𝑀 · 𝑁) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wrex 3054   class class class wbr 5027  (class class class)co 7164  cc 10606  1c1 10609   · cmul 10613  cz 12055  cdvds 15692   gcd cgcd 15930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-dvds 15693  df-gcd 15931
This theorem is referenced by:  rpmulgcd2  16090  coprmproddvdslem  16096  crth  16208  odadd2  19081  ablfac1b  19304  ablfac1eu  19307  coprmdvds2d  39619
  Copyright terms: Public domain W3C validator