MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmdvds2 Structured version   Visualization version   GIF version

Theorem coprmdvds2 16565
Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
coprmdvds2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀𝐾𝑁𝐾) → (𝑀 · 𝑁) ∥ 𝐾))

Proof of Theorem coprmdvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divides 16165 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾))
213adant1 1130 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾))
32adantr 480 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾))
4 simprr 772 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℤ)
5 simpl2 1193 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑁 ∈ ℤ)
6 zcn 12476 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 12476 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8 mulcom 11095 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) = (𝑁 · 𝑥))
96, 7, 8syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 · 𝑁) = (𝑁 · 𝑥))
104, 5, 9syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑥 · 𝑁) = (𝑁 · 𝑥))
1110breq2d 5104 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ (𝑁 · 𝑥)))
12 simprl 770 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1)
13 simpl1 1192 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑀 ∈ ℤ)
14 coprmdvds 16564 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀𝑥))
1513, 5, 4, 14syl3anc 1373 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀𝑥))
1612, 15mpan2d 694 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑁 · 𝑥) → 𝑀𝑥))
1711, 16sylbid 240 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → 𝑀𝑥))
18 dvdsmulc 16194 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)))
1913, 4, 5, 18syl3anc 1373 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)))
2017, 19syld 47 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)))
21 breq2 5096 . . . . . . 7 ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀𝐾))
22 breq2 5096 . . . . . . 7 ((𝑥 · 𝑁) = 𝐾 → ((𝑀 · 𝑁) ∥ (𝑥 · 𝑁) ↔ (𝑀 · 𝑁) ∥ 𝐾))
2321, 22imbi12d 344 . . . . . 6 ((𝑥 · 𝑁) = 𝐾 → ((𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)) ↔ (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2420, 23syl5ibcom 245 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑥 · 𝑁) = 𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2524anassrs 467 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) = 𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2625rexlimdva 3130 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
273, 26sylbid 240 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁𝐾 → (𝑀𝐾 → (𝑀 · 𝑁) ∥ 𝐾)))
2827impcomd 411 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀𝐾𝑁𝐾) → (𝑀 · 𝑁) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092  (class class class)co 7349  cc 11007  1c1 11010   · cmul 11014  cz 12471  cdvds 16163   gcd cgcd 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406
This theorem is referenced by:  rpmulgcd2  16567  coprmproddvdslem  16573  crth  16689  odadd2  19728  ablfac1b  19951  ablfac1eu  19954  coprmdvds2d  41984
  Copyright terms: Public domain W3C validator