MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem2 Structured version   Visualization version   GIF version

Theorem fmfnfmlem2 22560
Description: Lemma for fmfnfm 22563. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem2 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . 6 (𝜑𝐿 ∈ (Fil‘𝑋))
21ad2antrr 725 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
3 simplr 768 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑥𝐿)
4 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
5 fmfnfm.f . . . . . . . . . 10 (𝜑𝐹:𝑌𝑋)
6 ffn 6487 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
7 dffn4 6571 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
86, 7sylib 221 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
9 foima 6570 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
105, 8, 93syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
11 filtop 22460 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
121, 11syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
13 fmfnfm.b . . . . . . . . . 10 (𝜑𝐵 ∈ (fBas‘𝑌))
14 fgcl 22483 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
15 filtop 22460 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
1613, 14, 153syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
17 eqid 2798 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
1817imaelfm 22556 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
1912, 13, 5, 16, 18syl31anc 1370 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2010, 19eqeltrrd 2891 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
214, 20sseldd 3916 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
2221ad2antrr 725 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ran 𝐹𝐿)
23 filin 22459 . . . . . 6 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
242, 3, 22, 23syl3anc 1368 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
25 simprr 772 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
26 elin 3897 . . . . . . 7 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
27 fvelrnb 6701 . . . . . . . . . . . 12 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
285, 6, 273syl 18 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
2928ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
305ffund 6491 . . . . . . . . . . . . . . . 16 (𝜑 → Fun 𝐹)
3130ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → Fun 𝐹)
32 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → 𝑧𝑌)
335fdmd 6497 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑌)
3433ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → dom 𝐹 = 𝑌)
3532, 34eleqtrrd 2893 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → 𝑧 ∈ dom 𝐹)
36 fvimacnv 6800 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
3731, 35, 36syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
38 cnvimass 5916 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ⊆ dom 𝐹
39 funfvima2 6971 . . . . . . . . . . . . . . . 16 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥))))
4031, 38, 39sylancl 589 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥))))
41 ssel 3908 . . . . . . . . . . . . . . . 16 ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → ((𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥)) → (𝐹𝑧) ∈ 𝑡))
4241ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥)) → (𝐹𝑧) ∈ 𝑡))
4340, 42syld 47 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ 𝑡))
4437, 43sylbid 243 . . . . . . . . . . . . 13 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ 𝑥 → (𝐹𝑧) ∈ 𝑡))
45 eleq1 2877 . . . . . . . . . . . . . 14 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
46 eleq1 2877 . . . . . . . . . . . . . 14 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑡𝑦𝑡))
4745, 46imbi12d 348 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑦 → (((𝐹𝑧) ∈ 𝑥 → (𝐹𝑧) ∈ 𝑡) ↔ (𝑦𝑥𝑦𝑡)))
4844, 47syl5ibcom 248 . . . . . . . . . . . 12 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡)))
4948expr 460 . . . . . . . . . . 11 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑧𝑌 → ((𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡))))
5049rexlimdv 3242 . . . . . . . . . 10 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡)))
5129, 50sylbid 243 . . . . . . . . 9 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦 ∈ ran 𝐹 → (𝑦𝑥𝑦𝑡)))
5251impcomd 415 . . . . . . . 8 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → ((𝑦𝑥𝑦 ∈ ran 𝐹) → 𝑦𝑡))
5352adantrr 716 . . . . . . 7 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑦𝑥𝑦 ∈ ran 𝐹) → 𝑦𝑡))
5426, 53syl5bi 245 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ (𝑥 ∩ ran 𝐹) → 𝑦𝑡))
5554ssrdv 3921 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ 𝑡)
56 filss 22458 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝑥 ∩ ran 𝐹) ∈ 𝐿𝑡𝑋 ∧ (𝑥 ∩ ran 𝐹) ⊆ 𝑡)) → 𝑡𝐿)
572, 24, 25, 55, 56syl13anc 1369 . . . 4 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
5857exp32 424 . . 3 ((𝜑𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
59 imaeq2 5892 . . . . 5 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
6059sseq1d 3946 . . . 4 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
6160imbi1d 345 . . 3 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6258, 61syl5ibrcom 250 . 2 ((𝜑𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6362rexlimdva 3243 1 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cin 3880  wss 3881  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  fBascfbas 20079  filGencfg 20080  Filcfil 22450   FilMap cfm 22538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fbas 20088  df-fg 20089  df-fil 22451  df-fm 22543
This theorem is referenced by:  fmfnfmlem4  22562
  Copyright terms: Public domain W3C validator