MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem2 Structured version   Visualization version   GIF version

Theorem fmfnfmlem2 23849
Description: Lemma for fmfnfm 23852. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem2 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . 6 (𝜑𝐿 ∈ (Fil‘𝑋))
21ad2antrr 726 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
3 simplr 768 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑥𝐿)
4 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
5 fmfnfm.f . . . . . . . . . 10 (𝜑𝐹:𝑌𝑋)
6 ffn 6691 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
7 dffn4 6781 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
86, 7sylib 218 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
9 foima 6780 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
105, 8, 93syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
11 filtop 23749 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
121, 11syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
13 fmfnfm.b . . . . . . . . . 10 (𝜑𝐵 ∈ (fBas‘𝑌))
14 fgcl 23772 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
15 filtop 23749 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
1613, 14, 153syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
17 eqid 2730 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
1817imaelfm 23845 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
1912, 13, 5, 16, 18syl31anc 1375 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2010, 19eqeltrrd 2830 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
214, 20sseldd 3950 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
2221ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ran 𝐹𝐿)
23 filin 23748 . . . . . 6 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
242, 3, 22, 23syl3anc 1373 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
25 simprr 772 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
26 elin 3933 . . . . . . 7 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
27 fvelrnb 6924 . . . . . . . . . . . 12 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
285, 6, 273syl 18 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
2928ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
305ffund 6695 . . . . . . . . . . . . . . . 16 (𝜑 → Fun 𝐹)
3130ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → Fun 𝐹)
32 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → 𝑧𝑌)
335fdmd 6701 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑌)
3433ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → dom 𝐹 = 𝑌)
3532, 34eleqtrrd 2832 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → 𝑧 ∈ dom 𝐹)
36 fvimacnv 7028 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
3731, 35, 36syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
38 cnvimass 6056 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ⊆ dom 𝐹
39 funfvima2 7208 . . . . . . . . . . . . . . . 16 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥))))
4031, 38, 39sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥))))
41 ssel 3943 . . . . . . . . . . . . . . . 16 ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → ((𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥)) → (𝐹𝑧) ∈ 𝑡))
4241ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥)) → (𝐹𝑧) ∈ 𝑡))
4340, 42syld 47 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ 𝑡))
4437, 43sylbid 240 . . . . . . . . . . . . 13 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ 𝑥 → (𝐹𝑧) ∈ 𝑡))
45 eleq1 2817 . . . . . . . . . . . . . 14 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
46 eleq1 2817 . . . . . . . . . . . . . 14 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑡𝑦𝑡))
4745, 46imbi12d 344 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑦 → (((𝐹𝑧) ∈ 𝑥 → (𝐹𝑧) ∈ 𝑡) ↔ (𝑦𝑥𝑦𝑡)))
4844, 47syl5ibcom 245 . . . . . . . . . . . 12 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡)))
4948expr 456 . . . . . . . . . . 11 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑧𝑌 → ((𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡))))
5049rexlimdv 3133 . . . . . . . . . 10 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡)))
5129, 50sylbid 240 . . . . . . . . 9 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦 ∈ ran 𝐹 → (𝑦𝑥𝑦𝑡)))
5251impcomd 411 . . . . . . . 8 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → ((𝑦𝑥𝑦 ∈ ran 𝐹) → 𝑦𝑡))
5352adantrr 717 . . . . . . 7 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑦𝑥𝑦 ∈ ran 𝐹) → 𝑦𝑡))
5426, 53biimtrid 242 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ (𝑥 ∩ ran 𝐹) → 𝑦𝑡))
5554ssrdv 3955 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ 𝑡)
56 filss 23747 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝑥 ∩ ran 𝐹) ∈ 𝐿𝑡𝑋 ∧ (𝑥 ∩ ran 𝐹) ⊆ 𝑡)) → 𝑡𝐿)
572, 24, 25, 55, 56syl13anc 1374 . . . 4 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
5857exp32 420 . . 3 ((𝜑𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
59 imaeq2 6030 . . . . 5 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
6059sseq1d 3981 . . . 4 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
6160imbi1d 341 . . 3 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6258, 61syl5ibrcom 247 . 2 ((𝜑𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6362rexlimdva 3135 1 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cin 3916  wss 3917  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260  Filcfil 23739   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-fg 21269  df-fil 23740  df-fm 23832
This theorem is referenced by:  fmfnfmlem4  23851
  Copyright terms: Public domain W3C validator